
Porting Zephyr RTOS to the
LEON/GRLIB SoC SPARC v8

architecture

Nikolaus Huber

Space Engineering, master's level (120 credits)
2019

Luleå University of Technology
Department of Computer Science, Electrical and Space Engineering

Abstract

The aim of this thesis is to create a port of the Zephyr realtime operating system
for the LEON processor platform. The LEON is a frequently used computing core
for spaceflight applications, with ample flight heritage. It is based upon the well
established SPARC v8 instruction set, and offers many extensions to ease software
development and increase overall processor performance. An overview of the nec-
essary steps towards a functional architecture port is given in this report. Special
emphasis is put upon the interrupt handling and context switching. One LEON
specific feature introduced with the GR716 LEON3-FT microcontroller, register
window partitioning, is used to increase the performance of the context switching
mechanism in the operating system. By using this feature, context switching time
has shown to decrease significantly, while easing verification of the overall software
system by providing dedicated partitions for tasks with hard realtime requirements.

Keywords: RTOS, SPARC, Zephyr, LEON, Register Window Partitioning

i

ii

Sammanfattning

Det övergripande målet med examensarbetet är att porta Zephyr realtidsopera-
tivsystem (OS) till LEON processorplattformen. LEON processorn är ursprungligen
designad för och förekommer ofta i datorsystem inom rymd p.g.a. sina feltoleranta
egenskaper. LEON är kompatibel med den öppna SPARC v8 instruktionsuppsät-
tningen vilken också tillåter utökning och anpassningar. Rapporten ger läsaren en
överblick av vilka steg som är nödvändiga för att skapa en fungerande arkitektur-
port av ett OS. Vidare beskriver rapporten mer i detalj designen kring trådväxling
och avbrottshantering, samt hur dessa anpassas för att utnyttja LEON specifika
utökningar av SPARC till att nå högre prestanda. GR716 LEON3-FT introducerar
partitionering av SPARC registerfönster för att kunna minska tiden det tar opera-
tivsystemet att växla trådar. Denna funktion har inte använts tidigare i något OS,
och är därför av särskilt intresse att studera och karakterisera. Resultaten visar att
trådväxlingstiden minskat signifikant, samtidigt som determinismen blivit bättre
och därigenom är det nu enklare att designa system med hårda realtidskrav.

iii

iv

Acknowledgements

I would like to express my genuine gratitude to my academic supervisor, Anita
Enmark, at Luleå University of Technology, for not only agreeing to examine my
master thesis project, but for inspiring me to dive into the fascinating world of
spacecraft onboard data handling in the first place. Thank you for the invaluable
help during the last two years, with all the projects I was involved in.

Furthermore, I would like to thank my supervisor, Daniel Hellström, from Cobham
Gaisler, for suggesting this thesis topic, as well as the amazing support on the way.
Also, my sincere thanks to my second supervisor, Martin Åberg, for your input and
your help, and the many interesting discussions we had about the SPARC platform
during my time at Gaisler.

There are too many people, who have made my years of studying as enjoyable as they
were, therefore, I just want to name a few. To Cassidy Thompson, a big thank you
for your friendship, and your help whenever I struggle with the English language.
To Florine Enengl, for all the fun we had in Vienna, and continue to have during
our abroad adventures. To Kiki, Fabian, Siiri, Hampus, Georges, Natalie, August,
Ludvig, John, Terese, Joar, Daniel, Niels, Elin, and Anna, for making my time in
Kiruna unforgettable.

Finally, I must express my very profound gratitude to my parents, Anita and Wolf-
gang Huber, and to my brother, Laurenz, for providing me with unfailing support
and continuous encouragement throughout my years of study and through the pro-
cess of moving to Sweden. This accomplishment would not have been possible
without them. Thank you.

v

vi

Contents

Acronyms ix

List of Figures x

1 Introduction 1
1.1 Thesis outline . 2
1.2 Copyright notice for code samples . 3

2 Background 5
2.1 Realtime operating systems . 5

2.1.1 An RTOS for the age of IoT - Zephyr 6
2.2 Hardware architecture . 7

2.2.1 SPARC v8 . 7
2.2.1.1 Registers . 9
2.2.1.2 Traps . 11
2.2.1.3 Assembly language 13

2.2.2 LEON3 . 14
2.2.3 GR716 . 14
2.2.4 The porting process . 15

3 Porting Zephyr 17
3.1 Overview . 17
3.2 Early boot up sequence . 19
3.3 Traps . 21

3.3.1 Trap table . 21
3.3.2 Window overflow trap . 22
3.3.3 Window underflow trap . 27

3.4 Context switching . 30
3.5 Thread creation . 34
3.6 Device drivers . 35

3.6.1 Interrupt controller . 35

vii

Contents

3.6.2 Timer . 36
3.7 CPU idling . 37
3.8 Linker scripts and toolchain . 38

4 Window Partitioning 39
4.1 Interrupt handling . 40
4.2 Context switching . 40

5 Performance Evaluation 45
5.1 LEON benchmarking . 45

6 Benchmarking Results 47

7 Conclusion 51

8 Future work 53

Bibliography 55

A Code Samples 57
A.1 Window Overflow . 58
A.2 Window Underflow . 59
A.3 Context Switching . 60
A.4 Interrupt Trap . 63
A.5 Context Switching with Partitioning 68
A.6 Interrupt Trap with Partitioning . 72

B How to create an application with window partitioning 77

viii

Acronyms

ADC Analog-Digital Converter
ABI Application Binary Interface
AOCS Attitude and Orbit Control System
ASIC Application Specific Integrated Ciruit
BIOS Basic Input Output System
CPU Central Processing Unit
CWP Current Window Pointer
FPGA Field Programmable Gate Array
IoT Internet of Things
IP Intellectual Property
ISA Instruction Set Architecture
ISR Interrupt Service Routine
LSB Least Significant Bit
nPC Next Program Counter
OS Operating System
PC Program Counter
PIL Processor Interrupt Level
PROM Programmable Read Only Memory
PSR Processor Status Register
RISC Reduced Instruction Set Computer
RTOS Real Time Operating System
SoC System on Chip
TBR Trap Base Register
TCB Task Control Block
TM/TC Telemetry/Telecommand
WCET Worst Case Execution Time
WIM Window Invalid Mask

ix

List of Figures

1.1 Example of a layered software architecture for onboard data handling
systems. 1

2.1 Typical SPARC register file. 9
2.2 Processor Status Register fields. 10
2.3 Window Invalid Mask fields. 11
2.4 Trap Base Register fields. 12

3.1 Zephyr RTOS hardware abstraction hierarchy. 18
3.2 Initial setup for execution. 22
3.3 Decreasing the current window pointer. 23
3.4 State of register file before window overflow. 23
3.5 Window Overflow Trap. 24
3.6 Entering already used window. 24
3.7 Saving input and local registers to memory. 25
3.8 Rotating Window Invalid Mask (WIM) and incrementing Current

Window Pointer (CWP). 25
3.9 Trap epilogue. 26
3.10 Re-executing SAVE instruction. 26
3.11 Register file setup before window underflow. 27
3.12 Register file setup before entering window underflow trap handler. . . 27
3.13 Adjusting WIM. 28
3.14 Entering underflowed window. 28
3.15 Filling window with values from stack. 29
3.16 Going back to original trap window. 29
3.17 Standard trap epilogue. 29
3.18 Task A is yielding to Task B. 30
3.19 The Kernel structure holds pointers to the TCBs of Task A and Task

B. 31
3.20 Task A’s context is saved in its TCB. 31
3.21 Window saving loop. 32

x

List of Figures

3.22 Setting new Current Task pointer. 33
3.23 Filling in Task B’s context into the register window. 33
3.24 Task B is switched in and ready to run. 34

4.1 Initial state before context switching. 41
4.2 Getting a reference to currently running and next to run task. 41
4.3 Saving the task context. 42
4.4 Switching partitions. 42
4.5 Setting up Task B for execution. 43

6.1 Context switch timing benchmark results. 47
6.2 Measured timing between timer interrupt assertion and acknowledge

for the cases without and with partitioning. 49
6.3 Measured timing between timer interrupt acknowledge and start of

Interrupt Service Routine (ISR) for the cases without and with par-
titioning. 49

B.1 Folder structure for example application. 77
B.2 Kconfig top menu window. 81
B.3 Kconfig LEON partitioning options. 81
B.4 Output of make. 82
B.5 TSIM output. 82

xi

List of Figures

xii

CHAPTER 1

Introduction

Similar to modern software running on ground equipment, spacecraft onboard soft-
ware today is also often divided into different layers. An example for such an archi-
tecture is illustrated in Figure 1.1.

Source: [4, page 90]

Figure 1.1: Example of a layered software architecture for onboard data handling
systems.

The application layer is usually the highest level of onboard software. Differ-
ent applications are responsible for handling different tasks commonly found on
modern spacecrafts, such as keeping the spacecraft oriented (Attitude and Orbit

1

1. Introduction

Control System (AOCS)), communicating with other spacecrafts or ground sta-
tions (Telemetry/Telecommand (TM/TC)), supervising the status and health of
the spacecraft (Platform Control), commanding and receiving data from scientific
instruments (Payload Control), to name a few.

In order to ease the development of these applications, the onboard computing plat-
form usually offers interfaces for accessing the spacecraft’s hardware (e.g. reaction
wheel control, thermistor readings, etc.) and the upper layers of common communi-
cation protocol stacks (e.g. CAN, MIL-STD-1553, etc.). These routines and drivers
are gathered in the service layer.

The level closest to hardware in a typical onboard software architecture is the operat-
ing system layer. As software running on a spacecraft is subject to stringent timing
requirements, a special class of operating systems is used, which is usually referred
to as Real Time Operating System (RTOS). An RTOS is a piece of software, that
can schedule multiple applications (usually then called tasks or threads) on a limited
number of processors. In contrast to a general purpose Operating System (OS), an
RTOS can guarantee deterministic timing behaviour for its different operations (e.g.
switching from one execution thread to another takes a fixed number of clock cycles).
This allows for the software system to be analysed during design and implementa-
tion, so that it can be verified, that every task always finishes within its predefined
deadline. This thesis deals with a specific RTOS, called Zephyr. The main goal
of this thesis was to port this RTOS to a previously unsupported architecture, the
LEON platform.

1.1 Thesis outline

This thesis report is divided into the following parts:

Chapter 2 gives an introduction to realtime operating systems in general, a short
overview of the Zephyr RTOS, and a description of the underlying hardware plat-
form.

Chapter 3 illustrates the overall porting process of the OS, gives an overview of the
important steps towards a functioning system, and highlights some of the design
choices made along the way.

Since every hardware architecture has its specific design traits, chapter 4 introduces
the concept of window partitioning, which is available on certain LEON processors.
The impact of using this feature on the performance of the operating system is
analysed in chapters 5 and 6.

Finally, a conclusion of this work is given in chapter 7 together with suggestions for
possible future improvements in chapter 8.

2

1. Introduction

1.2 Copyright notice for code samples

All software development for this work has been done during a thesis internship at
Cobham Gaisler AB in Gothenburg, Sweden. As such, all the code samples found
in this report are subject to the following copyright notice:

Copyright (c) 2019, Cobham Gaisler AB
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

3

1. Introduction

4

CHAPTER 2

Background

2.1 Realtime operating systems

"An embedded system is a combination of computer hardware and software [...]
designed to perform a dedicated function." [2]

Embedded systems are everywhere. They range from the smallest sensor configu-
rations up to control systems for cars, aeroplanes, and satellites. As mentioned in
the above quote, embedded systems are designed to perform dedicated functions,
which separates them from general computing systems, such as servers or personal
computers. General computing systems are versatile, the same PC can be used for
different tasks, such as gaming, office work, or scientific computations. Embedded
systems are dedicated to the environment they are embedded in.

Embedded systems often have stricter requirements than general purpose systems
regarding performance, reliability, and predictability. For example, the software
used for controlling the Anti-lock Breaking System (ABS) in modern cars must be
computationally efficient (performance), is not allowed to ever reach a dead-lock
state (reliability), and must be able to work with a deterministic timing behaviour
to guarantee a controlled, periodic break release pattern (predictability).

Early embedded systems often featured dedicated processors for each important
function. This means, that the ABS for example, would have its own computing
chip, whose sole duty is to control the before mentioned break release patterns.
Fortunately, the majority of time while driving is not spent on emergency breaking.
This implies, that the processor used for this emergency feature is idle most of the

5

2. Background

times. Dedicating a processor to each feature a car has results in an overall increase
in costs, weight, and power consumption. On the other hand, predictability is
easy to verify, since the overall response time of the system is never longer than
the Worst Case Execution Time (WCET) of the one software routine executing
on it. Especially with space applications in mind, the increased weight and power
consumption may impose problems on the overall system design, so that a different
approach might be advantageous.

In order to minimise the amount of processors present in a system design, multiple
software routines (usually termed processes, threads, or tasks) share the available
computational resources. This means, that there must be a special piece of software,
that distributes these resources among different processing jobs, usually called a
scheduler :

"The aim of processor scheduling is to assign processes to be executed by the proces-
sor or processors over time, in a way that meets system objectives, such as response
time, throughput and processor efficiency" [18]

The scheduler is part of an operating system, which usually includes other software
as well (e.g. libraries for accessing the hardware, routines for memory management,
etc.). Many (especially safety-critical) embedded systems have realtime require-
ments. Realtime computing systems can be characterised in the following way:

"The correctness of a computation depends not only on the logical correctness but
also on the time at which the results are produced." [16]

It is common to distinguish hard realtime and soft realtime systems. In hard realtime
systems, each computational task has a deadline, which must be kept under all
circumstances. Missing a deadline might result in economical disaster or loss of
human lives [16]. Soft realtime systems have less strict timing requirements in the
sense, that missing a deadline from time to time is tolerable.

The stringent timing requirements of realtime systems necessitate the usage of a
particular kind of OS, commonly termed Real Time Operating System. Over the
years, a multitude of different RTOS have been developed, ranging from small micro-
kernels, to realtime extensions of desktop grade operating systems (e.g. Realtime
Linux).

This thesis work was dedicated to one specific RTOS, Zephyr, which will be presented
shortly in the following section.

2.1.1 An RTOS for the age of IoT - Zephyr

"The Zephyr Project strives to be the best-of-breed, open source RTOS for con-
nected, resource-constrained devices, and built with security and safety in mind."
[22]

6

2. Background

Zephyr is an RTOS, that is built and maintained by different companies working in
the Internet of Things (IoT) field. The core of the OS is taken from Wind River’s
operating system kernel Rocket [23].

The kernel itself can be divided into a very small nano-kernel, and a slightly bigger
micro-kernel, which incorporates additional features to ease software development
for Zepyhr.

Zephyr has been developed with the following goals in mind [14]:

• CPU architecture independence
• Small footprint (can run from 10 kB of memory)
• Security
• Connectivity
• Integration of powerful development tools
• Open source code

Zephyr offers a wide range of different features [11]:

• Multithreading (including support for POSIX pthreads API)
• Interrupt services (both registering interrupt service routines at compile time

and runtime)
• Memory allocation services
• Inter-Thread synchronisation services (e.g. semaphores, mutexes)
• Inter-Thread data passing services (e.g. message queues, byte streams)
• Power management services
• Support for multiple scheduling policies (e.g. rate monotonic, earliest deadline

first, cooperative, preemptive, etc.)

Developing applications for Zephyr is done using the cmake1 tool. Cmake itself cre-
ates build systems in different formats, with Zephyr supporting the well established
Unix makefiles, or the more modern Ninja format. For an example of how to build
a working application for Zephyr, refer to [10] or Appendix B.

2.2 Hardware architecture

2.2.1 SPARC v8

The Scalable Processor ARChitecture (SPARC) does not refer to a single chip, or
even family of chips. It is, what is usually called an Instruction Set Architecture
(ISA):

"An abstract interface between the hardware and the lowest level software of a
1https://cmake.org

7

2. Background

machine that encompasses all the information necessary to write a machine language
program that will run correctly, including instructions, registers, memory access,
I/O, and so on." [15]

An ISA can be imagined as a contract between the manufacturer of a processor and
the software developer. It guarantees, that an application written according to the
ISA will run on any chip that is compliant with the ISA. As such, it can be seen as
the programmer’s view of the underlying processor platform.

Over the years, many different implementations of the SPARC architecture have
been developed, ranging from small microcontrollers to processors meant for high
performance computing. There are multiple versions of the SPARC ISA, since it has
gone through various design iterations over the years. This thesis focuses on version
8 of the SPARC instruction set, as it forms the base for the LEON3 processor core.

The instruction set guarantees, that a machine language program will always yield
the same result, independent of the actual hardware used. However, in modern
software development, applications are rarely written in machine language anymore.
Instead, higher level languages are used to ease the development process.

These higher level languages are then translated by a specific piece of software,
called the compiler. The compiler takes an application written in a higher level
language and translates it to the desired machine language. In case that the desired
machine language is not the same as the machine language understood by the host
platform (i.e. the computer which is running the compiler), this process is often also
referred to as cross-compilation (which is usually the case in software development
for embedded systems).

To make it possible for compiled programs to be linked together with other machine
level code, and to allow for standardised ways of calling operating system functions,
a second level of agreement has to be established, referred to as the Application
Binary Interface (ABI):

"The user portion of the instruction set plus the operating system interfaces used
by application programmers. Defines a standard for binary portability across com-
puters." [15]

The SPARC ABI [19] includes important details, such as function calling conventions
(i.e. how arguments are transported to and from function calls), the usage of the
system’s stack memory (e.g. stack frame sizes and relative addresses of specific
values within each stack frame), and operating system calls.

Within the scope of this thesis it is neither practical, nor necessary to include a full
description of the SPARC v8 design. Only the parts, which are inevitably important
for the understanding of the described algorithms will be presented in the following
sections. For a full overview of the underlying architecture, please refer to the
SPARC v8 manual [21] and the SPARC ABI [19].

8

2. Background

2.2.1.1 Registers

Figure 2.1: Typical SPARC register file.

SPARC v8 defines a 32 bit (big endian) Harvard architecture. One design charac-
teristic of the SPARC platform is the use of a windowed register file. In many other
Reduced Instruction Set Computer (RISC) architectures, a bank of general purpose
working registers is provided as operands for instructions. Whenever a new function
is called, at least part of these registers must be saved out to the main memory, to
provide a blank working environment for the new function. The particular registers
needed to be saved are defined in a platform’s ABI.

In the SPARC architecture, another approach is used, which is demonstrated in
Figure 2.1. At any point, a function has access to 8 global registers, and 24 work
registers, which form a window. Each register window is divided into three groups:
8 input, 8 local, and 8 output registers. An important design trait, which allows
for a certain convenience when doing function calls, is the overlapping of windows.
The 8 output registers of the current window (w0 in Figure 2.1, which is pointed
to by the Current Window Pointer (CWP)) are the same as the 8 input registers
of the adjacent window (w3 in the example). When executing a function call with
parameters, these parameters can be put into the output registers of the current
window, and upon execution of a save instruction, these parameters are available in
the input registers of the new window. This mechanism makes it possible to minimise
the amount of memory loads and stores that need to be performed (which on most
systems are slower than accessing working registers). If functions do not need more
registers, than provided in their window (together with the global registers), not a

9

2. Background

single access to the main memory has to be done. As such, the register windows
can be seen as a cache for the system’s stack memory. The SPARC ISA specifies,
that the number of available windows on a compliant system must be between 2
and 32. Algorithms are therefore developed in a way, that they do not depend
on the actual number of windows present on a specific chip. For demonstration
purposes, all algorithms in this thesis report will be shown on the 4 window register
file illustrated in Figure 2.1. This example figure furthermore indicates the global
registers, the y register (which is used during certain arithmetic operations), the
Processor Status Register, the Window Invalid Mask, and the Trap Base Register.

Figure 2.2: Processor Status Register fields.

The structure of the Processor Status Register (PSR) is shown in Figure 2.2. It
consists of the following fields:

impl These bits identify the specific implementation or class of implementations of the
architecture

ver Identifies a distinct version of the chip within an implementation class
icc Holds the condition codes for the integer unit. Those bits are used for conditional

branching
res. Reserved for future iterations of the SPARC ISA
EC If set, the (optional) coprocessor is enabled
EF If set, the (optional) floating point unit is enabled
PIL Processor interrupt level. Sets the interrupt level above which the processor will

transfer control to a trap handler (see section 3.3)
S If set, the processor is in supervisor mode

PS Contains the value of the S bit during the most recent trap
ET If set, traps are enabled (see section 3.3)

CWP Number of the current window in use by the system

Some SPARC instructions are only allowed to be executed if the processor is in a
supervisor mode. The S and PS bits can be used to implement automatic switching
between the user and the operating system code. In the current implementation,
all code is executed in supervisor mode, therefore, these two bits are just set to 1
during boot up (see section 3.2). The PIL and ET are used for controlling the
way the processor reacts to interrupts. Those two fields are further explained in
section 2.2.1.2. Since neither a coprocessor, nor the floating point unit have been
used during this thesis work, the respective enable bits EC and EF are not further
discussed here. The CWP encodes the currently used window. It is a 5-bit number,
which explains the maximum of 32 register windows in a SPARC v8 system.

One problem with the windowed register file arises, once a save instruction causes
a wrap around on the register ring. Therefore, the last window, which has empty

10

2. Background

local and input registers (OBSERVE: the output registers already hold valid data,
since the coincide with the input registers of the first used window) must be marked
in a way, that the operating system can take care of the imminent overflow. This
marking is done in the WIM register:

Figure 2.3: Window Invalid Mask fields.

The WIM is used to mark windows as invalid, thereby guarding the system against
overflows. When a save instruction would cause entering a window, that already
holds valid data, a trap is caused by the architecture, and execution is given to a
specific function of the operating system to resolve this issue. This mechanism is
further described in section 3.3.2. In normal operation, only one bit is ever set in the
WIM register, illustrated in Figure 2.3. If a specific system does not have the full
32 windows available, the upper bits of WIM always read as zero, and any writes to
them are neglected.

The Trap Base Register (TBR) will be explained in the following section. Although
not currently implemented, it shall be mentioned, that for changing the values of
PSR, WIM, and TBR, the processor must be in supervisor mode.

2.2.1.2 Traps

A trap is a transfer of control to a special part of the operating system. It is used
to handle unexpected events, such as errors and interrupts. The SPARC v8 defines
three different categories of traps:

Precise traps are caused by a particular instruction. The trap code is executed before
any software visible state changes due to the trapping instruction. An example
for a precise trap is the window overflow trap, further explained in section 3.3.2.
Whenever the CWP is decremented (e.g. due to a function call), and it thereby
enters an invalid window, the processor transfers control to the window overflow
trap handler to change the state of the system in a way, so that execution can be
resumed.

Deferred trap are similar to precise traps, with the exception, that by the time the
processor transfers control to the trap handler, the program visible state of the
system might have changed. Examples for deferred traps are error traps caused by
the floating point unit.

Interrupting traps can be caused by an external interrupt request, implementation
specific states (e.g. breakpoint mechanisms), or an exception caused by an earlier
instruction (e.g. an ECC data error after a load instruction).

11

2. Background

The SPARC v8 offers 16 different external interrupt request lines. In order to cause
an external interrupt, two conditions must be met:

• Traps must be globally enabled by setting the ET bit in the PSR
• The asserted request line number must be above the current PIL (encoded as

a 4 bit field in the PSR)

The SPARC v8 ISA defines 256 different trap types. All trap types are listed in a trap
table, that holds the first four instructions of each trap handler routine. Usually,
these four instructions are used to jump to the actual trap handler code that is
somewhere else in the instruction memory. The trap table itself can also be put at
different memory locations. When a trap happens, the processor will look up the
location of the trap table through the TBR. This register must be set up to point
to the beginning of the trap table during the early boot up sequence (see section
3.2).

Figure 2.4: Trap Base Register fields.

The TBR register consists of 3 different fields, bits 32 to 12 are the Trap Base
Address (TBA), containing the most significant 20 bits of the trap table address.
Bits 11 to 4 encode the trap type (thereby offering 256 different types). Bits 3 to
0 are always zero (therefore each trap type entry has 4 instructions available in the
trap table).

Since the upper 20 bits of the TBR are set up during boot up, the processor only
has to adjust the trap type field whenever a trap happens, and the TBR will auto-
matically point towards the address of the respective trap handler within the table.

Given the number of trap types and the number of instructions per trap type in
the table, the trap table always has a footprint of 4 kB. Especially for memory
restricted systems, this might cause memory space issues. Therefore, the SPARC v8
Embedded Extension [17] suggests a different trap handling strategy, single vector
trapping. When using single vector trapping, control is always transferred to the
address specified by the upper 20 bits in the TBR, independent of the trap type.
A software routine located at this address must then take care of looking up the
correct trap handler routine. Since usually not all 256 trap types have a dedicated
trap handler assigned to them, the majority of them can point to the same default
handler routine, thereby greatly reducing the memory footprint of the trap table.

12

2. Background

2.2.1.3 Assembly language

In this following section, only a very short introduction into SPARC assembly will
be given to ease the understanding of the supplied code snippets throughout this
report. For a full list of available instructions on SPARC architectures refer to [21].

SPARC assembly language instructions are interpreted left to right. A typical ad-
dition for example can be done with:

add %l1, %l2, %l3

The add instruction causes the values currently present in local registers %l1 and
%l2 to be added together, and the result will be put into local register %l3. In the
example above, all three operands are given as registers. The second operand could
be given as an immediate value as well (e.g. to accommodate different memory
addressing modes):

add %l1, 0x10, %l3

Here, the value 0x10 will be added to the value in %l1 and the result saved in %l3.
It is important to notice, that since each instruction is 32 bits wide, there is a limit
on the value that can be immediately supplied as an operand. Given the design of
the add instruction in the SPARC ISA, immediate arguments are restricted to 13
bit numbers [21].

If a higher number shall be used as an operand, it first has to be placed into a
register. For a 32 bit number, this is done in two steps:

sethi %hi(0x7FFFFFFF), %l1
or %l1, %lo(0x7FFFFFFF), %l1

The sethi instruction sets the highest 22 bits of the supplied destination register
%l1. The consecutive or is used to set the lower 10 bits. The second line of this
example also demonstrates, that the very same register can both be used as a source
and as a destination. The macros %hi and %lo are provided by the preprocessor
of the assembler for convenience to mask out the upper 22 or the lower 10 bits of a
32 bit number. Since the operation of setting a 32 bit number in a register is very
common (e.g. for setting up memory addresses), there is a synthetic instruction, that
can be used when writing assembly code. The following code will automatically be
translated into the same machine code as the statement given above:

set 0x7FFFFFFF, %l1

Some instructions, such as the store (st) and load (ld) instruction, are also available
in a double word version (std, ldd). In order to use the double word instructions,
the supplied memory address must be double word aligned.

SPARC features a delayed branching strategy. This means, that the instruction

13

2. Background

following immediately after a branch instruction will always still be executed (there
is a way of annulling the delay slot when doing conditional branching [21]). The
delay slot can, for example, be used to supply an argument to a called subroutine
by writing to the output register:

call function1
wr 0x10, %o0

In the above example, function1 is called and there is a write instruction in the
delay slot, which will put the value 0x10 into output register %o0. This write
instruction will be executed before the first instruction of function1. To mark
delay slots, it is common to indent the instruction.

2.2.2 LEON3

The LEON3 is a fully SPARC v8 compliant 32-bit processor core developed by
Cobham Gaisler AB. It is designed for embedded applications, offering multiple ISA
extensions suggested in the SPARC Embedded Extension [17]. Especially with space
applications in mind, the processor soft core can be configured to enable or disable
fault-tolerance against Single Event Upset (SEU) errors at design time.

The LEON3 is part of a bigger ecosystem, called GRLIB [9]. GRLIB is a collection of
VHDL libraries of different Intellectual Property (IP) cores. GRLIB based designs
are built around the AMBA-2.0 AHB/APB bus architecture. The idea is, that
embedded system designers can select all the IPs/pheripherals they need for their
specific application, and connect those to a central bus. The finished designs can be
synthesised in FPGAs or ASICs.

Cobham Gaisler also already offers different System on Chip (SoC) designs, which
are radiation tested and qualified for space flight applications. One of the newest
additions to this line of SoCs is the GR716 microcontroller.

2.2.3 GR716

The GR716 is a new microcontroller designed by Cobham Gaisler for the space and
aeronautics market. It is based on the LEON3-FT processor design, and offers many
standard interfaces used in space applications:

• MIL-STD-1553
• CAN 2.0
• UARTs, SPI, I2C
• SpaceWire

Proposed usage areas include propulsion system control, sensor bus control, power
control, thermal control, AOCS, and instrumentation control, among others.

14

2. Background

The high number of register windows (31 windows) motivates the usage of a spe-
cial LEON3 feature, register window partitioning, which will be used for enhancing
context switching speed (see section 4.2).

For a full description of the GR716, refer to its datasheet [6].

2.2.4 The porting process

Zephyr is developed with portability in mind. The majority of the operating system
code is written in high level C, therefore does not need to be adapted when running
on a different platform. Nevertheless, specific parts of the operating system are
depending on the underlying hardware. It shall be mentioned here, that the current
implementation of the Zephyr RTOS is not developed to be compliant with any
coding standards for safety-critical systems (e.g. MISRA-C 2).

The Zephyr documentation provides a porting guide [1], and the overview of the
porting process illustrated in chapter 3 will mostly follow the steps highlighted
there. Especially the early boot process (section 3.2) was inspired by the C runtime
environment included in Cobham Gaisler’s GCC compiler extension for the LEON
platform, called BCC [5]. As indicated before, one of the most important jobs of an
operating system is switching from one execution thread to another. This ability
ultimately allows for multiple (independently developed) software function routines
to share one processing core.

A lot of research effort has gone into developing efficient algorithms for the SPARC
platform to achieve this context switching behaviour. A good overview of what is
understood as a task’s context can be found in [12]. It also gives an introduction
into how light-weight threads are implemented in the desktop operating system
SunOS. [13] presents multiple different context switching algorithms for SPARC like
processors, together with an estimate of their complexity and runtime behaviour.
The lazy context switching mechanism, that was developed as part of this thesis
(see section 4.2), is based on an algorithm specified in the mentioned report. A
good introduction to the SPARC platform itself is given in [3]. It describes different
hardware implementations of the SPARC ISA, and presents important, hardware-
vendor independent software routines, such as the window overflow and underflow
trap handlers (see section 3.3).

2https://www.misra.org.uk

15

https://www.misra.org.uk

2. Background

16

CHAPTER 3

Porting Zephyr

3.1 Overview

The word porting usually refers to the action of adapting parts of an application, in
order to make it executable on a different platform. Depending on how different said
platform is from the original one, this process might involve a different workload.
Generally, when talking about porting for embedded systems, three different things
might be meant:

• Application porting

Whenever an application, that was written for a specific OS shall be run on a differ-
ent OS, the process to achieve this is called application porting. If the underlying
OS conforms to a well established standard (e.g. POSIX), applications might not
need to go through any change in order to run on a different system as well. This
kind of porting will not be further discussed in the scope of this work.

• Board porting

If there already exists a port of the operating system for the underlying hardware,
only parts of the code need to be adapted to the specific board that is used. This
usually includes certain device drivers and protocol stacks.

• Architecture Port

In case that the operating system itself has not been ported to a specific architecture

17

3. Porting Zephyr

before, this usually requires porting of all parts of the OS that require close interac-
tion with the underlying hardware. Which parts of an OS need adaption in order to
run on a different hardware depends on the pecularities of the used system. Certain
parts of the OS almost always need altering, like the boot up sequence, error state
handling, interrupt handling, and context switching.

In order to facilitate code reusability, the majority of modern operating systems
are usually implemented in a higher level language, such as C or C++. A part
of the code, however, needs to be adapted for each underlying platform the OS
shall be used for (and is frequently written in the respective architecture’s assembly
language).

Figure 3.1: Zephyr RTOS hardware abstraction hierarchy for the LEON3
platform.

Zephyr features a layered design, where each level offers a higher abstraction of
the underlying one. A visualisation of this hierarchy for the LEON3 architecture is
illustrated in Figure 3.1. The SPARC v8 ISA and ABI build the basis of the LEON3
processor design. There are different implementations of the LEON3 processor, such
as the GR716 or the GR712, and since the processor core is available as generic
VHDL code, it can be implemented in other designs as well. The GR716 Mini
Board is a physical evaluation platform developed by Cobham Gaisler to ease the
development of applications based on this particular processor. It is used during
hardware evaluation (see chapter 5).

An architecture port is needed to enable Zephyr to run on an ISA or an ABI that
is not currently supported [1]. In this section, the most important steps towards a
functional port of Zephyr on the LEON3 processor architecture will be described.
The mentioned steps are mostly focusing on the architecture port, certain parts from
the specific GR716 SoC port are included as well. The code of some of the most
important algorithms developed during this thesis work is shown in Appendix A.

18

3. Porting Zephyr

3.2 Early boot up sequence

After a system reset (e.g. initial boot up, reboot after error or power outage) the
early boot up sequence is responsible for putting the system into a state, in which
C code can be executed. In this section, a short overview of the necessary steps on
the LEON3 platform is presented.

After power is available and stabilised in the system, the processor will start to exe-
cute instructions from the instruction memory. The first instruction to be executed
is called the entry point. There are multiple ways of setting the memory address of
this first instruction, most commonly, the ENTRY symbol is defined in the linker
script (see section 3.8):

ENTRY(__leon_entry_point}

By defining the symbol __leon_entry_point as the entry point in the linker
script, the linker takes care of installing the address of the first instruction correctly.
After reset, the system will therefore resume execution at the following function:

FUNC_BEGIN __leon_entry_point
mov %g0, %g4
sethi %hi(__leon_trap_reset), %g4
jmp %g4 + %lo(__leon_trap_reset)
nop

FUNC_END __leon_entry_point

As can be seen in the code snipped above, the entry point routine is used to call the
reset trap handler (OBSERVE: at this stage, the trap table has not been installed
yet, therefore, causing a reset trap by software would not work, instead, the address
of the handler is used to jump into the routine).

In the reset trap handler, the system is first configured to use single vector trapping
by setting the SV bit (capitalised expressions such as ASR17_SV in the exam-
ple are used throughout this report for symbolic bitvectors) in the Ancillary State
Register %asr17 (as described in [17]):

rd %asr17, %g1
set ASR17_SV, %g2
or %g1, %g2, %g1
wr %g1, %asr17

Now the trap table can be installed by setting the TBR:

set __leon_trap_table, %g1
wr %g1, %tbr

Next, the CWP is set to point to w0, therefore, the invalid window is w2 (OB-
SERVE: if wr is supplied with two source operands, those two are combined through

19

3. Porting Zephyr

logic XOR before writing the result to the destination register). So first the WIM
is set (by toggling the second bit from 0 to 1, %g0 is hardwired to all zeros)

wr %g0, 2, %wim

and then the PSR register is altered:

rd %psr, %g1
set (PSR_PIL | PSR_ET | PSR_CWP), %g3
andn %g1, %g3, %g2
wr %g2, PSR_ET, %psr

PSR_PIL, PSR_ET, and PSR_CWP are bit-masks for their respective fields
within the PSR. By using them as the second argument to the andn instruction,
those bits are effectively masked out (i.e. all set to zero). Therefore, when writing
back to the PSR, this will set the CWP to w0, Processor Interrupt Level (PIL) to
zero, and enable traps (since PSR_ET is used as second argument to wr).

From now on, the C runtime system can be initialised. Assuming, that the initial
stackpointer was set up by the bootloader, the first stack frame can be allocated:

and %sp, 0xfffffff0, %l0
sub %l0, 96, %sp
clr %fp

The stackpointer of the first frame is set to 96 bytes below the initial stackpointer
value, and the frame pointer is cleared (According to [19] only the deepest stack
frame of the system has a frame pointer to zero). After setting up the stack frame,
some system specific information can be read from the configuration registers and
the number of windows (and the number of windows minus one) can be set at
the addresses labelled as __leon_nwindows and __leon_nwindows_min1
respectively. Those are used by other routines, such as the window overflow and
window underflow trap handlers, or the context switching mechanism.

At this point, the C runtime environment is successfully set up, and the first C
routine can be called:

call _PrepC
nop

The _PrepC function can be used if there are further initialisation steps to be
taken, which can be done in higher level C code. For now, it is enough to call the
early kernel initialisation function _Cstart provided by Zephyr [1].

void _PrepC(void)
{

_Cstart();
}

20

3. Porting Zephyr

3.3 Traps

3.3.1 Trap table

As described in section 2.2.1.2, for memory efficiency reasons, it was chosen to use
single vector trapping for this Zephyr port. Since only a few of the available 256
traps (trap type 0x00 to 0xFF) are going to be implemented, the trap table is divided
into subtables. Each subtable is characterised by the first hexadecimal digit of the
respective trap type. This means, there are 16 different subtables, and each subtable
holds the addresses of 16 different trap handlers. For a basic implementation, only
a few subtables are of interest, since the first one holds the addresses of important
OS routines (e.g. window overflow, window underflow, etc.) and the second one
holds the addresses of the 16 different interrupt service level routines. One more
table is used for holding the addresses of often used routines (e.g. functions to alter
the PIL).

The remaining 13 subtables can all point to one and the same table, which only
holds addresses to the unimplemented default trap, which for now will just put the
system into an error mode for debugging purposes.

This implies, that if a trap happens, execution will resume at the address specified
by the upper 20 bits of the TBR, which was set up during early boot up (see section
3.2). From there, a software routine has to look up the memory location of the
required trap handler routine. This is done in multiple steps:

rd %tbr, %l6
and %l6, TBR_TT_MASK, %l6
srl %l6, TBR_TT_SHIFT, %l6

First, the current value of the TBR is read, then a mask is used to get the trap type
from it. As the trap type is located at bits 4 to 11, it is also shifted to the right
(srl).

sethi %hi(__leon_trap_table_svt_level0), %l3
or %l3, %lo(__leon_trap_table_svt_level0), %l3

Next, the address of the subtable is calculated, and the respective subtable is fetched:

and %l6, 0xF0, %l5
srl %l5, 2, %l5 ! Table offset
ld [%l3+%l5], %l3 ! Fetch subtable

Now the actual trap handler address can be fetched from the subtable:

and %l6, 0x0F, %l5
sll %l5, 2, %l5 ! Table offset
ld [%l3+%l5], %l3 ! Fetch trap handler

21

3. Porting Zephyr

Finally, a jump instruction to the trap handler routine can be issued. In the delay
slot the PSR is read into local register %l0 as is required by the SPARC ABI [19]:

jmp %l3
rd %psr, %l0

Given their importance, the remaining part of this section will highlight two different
trap handler routines, the window overflow and window underflow trap handlers.

3.3.2 Window overflow trap

When a save instruction executes, the current value of the CWP is compared against
theWIM. If the save instruction would cause the CWP to point to an invalid register
window, that is, one whose corresponding WIM bit equals 1 (WIM[CWP] = 1), a
window overflow trap is caused [21].

The overflow handler code is shown in appendix A.1. The working of this fairly
short, but important, function will be illustrated in this section.

Both after the initial setup of the system through the Boot-PROM, and after a new
thread is placed in the register file by the context switching mechanism (see section
3.4), only a single window is filled with valid data, and the window right behind
it (CWP+1) is set in the WIM as invalid. The frame pointer (%i7) will point to
the base address of a full stack frame in the task’s stack (or the initial stack upon
boot up), the stack pointer (%o7) will point to an address at least 96 bytes below
the frame pointer (which is the minimum stack space per window as described in
[19]). This situation is demonstrated in Figure 3.2. In the visualisations throughout
this report, an empty rectangle symbolises an empty stack frame, if the frame is
coloured, it holds valid data.

Figure 3.2: Initial setup for execution.

When a save instruction is executed, the CWP decreases by one, and in most
cases, the save is accompanied by a subtraction instruction, which will set the
stack pointer of the new window to at least 96 bytes below its frame pointer. For

22

3. Porting Zephyr

convenience, these two operations can be combined, as the save instruction also acts
as an addition if it is defined with operands (i.e. save %sp, -96, %sp). It is worth
noticing, that both the source and destination register are defined as %sp, since in
the case of save, the source is taken from the old, and the destination from the new
register window. When no operands are defined, it will only decrease the CWP,
but will not manipulate any registers in the windows. This is useful for stepping
through the windows without changing their data, a feature, which will be used in
the window overflow and underflow trap handlers. The state of the register file after
one save %sp, -96, %sp instruction can be seen in Figure 3.3.

Figure 3.3: Decreasing the current window pointer.

The same procedure can be done one more time, which leads to a state shown in
Figure 3.4.

Figure 3.4: State of register file before window overflow.

If another save instruction is to be executed, this would align CWP and WIM, so
instead a trap is caused. According to the SPARC ISA [21], the trap decrements the
CWP (so the invalid window is entered), and the Program Counter (PC) and Next
Program Counter (nPC) are written in local registers %l1 and %l2 respectively
(illustrated in red in Figure 3.5).

23

3. Porting Zephyr

Figure 3.5: Window Overflow Trap.

This is the state, that is prepared by hardware, before execution is resumed at the
trap table base address, which will look up the corresponding handler address in the
trap table, and copy the PSR into local register %l0 (see section 3.3). It will then
jump to the window overflow trap handler code, whose address is installed in the
trap table.

From here on, the function shown in Appendix A.1 will be executed. The code
will be divided and shown alongside the visualisation of the algorithm, to ease
understanding (the line numbers correspond to their original in the full listing).

2 save

Figure 3.6: Entering already used window.

Through a save instruction, w0 is entered (which already holds valid data). The
stack pointer of this window still points to the end of the frame, which was reserved
for w0 when it was entered.

24

3. Porting Zephyr

3 std %l0, [%sp + 0x00]
4 std %l2, [%sp + 0x08]
5 std %l4, [%sp + 0x10]
6 std %l6, [%sp + 0x18]
7 std %i0, [%sp + 0x20]
8 std %i2, [%sp + 0x28]
9 std %i4, [%sp + 0x30]

10 std %i6, [%sp + 0x38]

Figure 3.7: Saving input and local registers to memory.

Through the use of mentioned stack pointer, the input and local registers of window
w0 are saved to their respective positions within the stack frame reserved for this
window (the position for each register relative to the stack pointer is defined in the
SPARC ABI [19]).

13 set __leon_nwindows_min1, %l0
14 ld [%l0], %l1
15 rd %wim, %l3
16 sll %l3, %l1, %l2
17 srl %l3, 1, %l3
18 wr %l3, %l2, %wim
19 nop
20 nop
21 nop
22

23 restore

Figure 3.8: Rotating WIM and incrementing CWP.

In the next part of the trap handler, the WIM is readjusted to point to the next
window. This is done in multiple steps:

Line 13 Set the address of a specific memory location, where the number of windows in the
system minus one is stored, into register %l0

Line 14 Load the number of windows minus one from address %l0 into %l1
Line 15 Read current value of WIM into %l3
Line 16 Shift current value of WIM to the left by the number of windows minus one and

save into %l2
Line 17 Shift current value of WIM to the right by one and save into %l3
Line 18 Take the value in %l3, execute a logical OR with %l2, and store the result in WIM

Line 19-21 Wait for three clock cycles. This is the maximum time it can take for the new
value of WIM to be systemwide ready [21]

Line 23 Through a restore operation, set back CWP to the window that was entered by
the trap

There are multiple things worth mentioning in this part of the algorithm. The

25

3. Porting Zephyr

seemingly complicated readjustment of WIM is caused by the fact, that a potential
underflow of the invalid bit must be taken care of. In case that WIM is set to
window w0 (bit 0 set in WIM), the next invalid window would be w3 (bit 4 set
in WIM). Therefore, the value of the current invalid window is rotated once to the
right, and number of windows minus one times to the left, and those two values are
combined through a logical OR. In case of WIM 6= w0, this will result in two bits
set after this OR operation, but one of them (the one with higher significance) will
be outside of the range of valid windows, and therefore a write to that bit in WIM
will be ignored.

25 jmp %l1
26 rett %l2

Figure 3.9: Trap epilogue.

The code shown in Figure 3.9 is the standard trap epilogue as defined in [21]. The
jump (jmp) instruction will cause execution to continue at the address given in the
supplied register operand (in this case %l1 which holds the PC from before the
trap). However, before resuming at this address, the instruction in the delay slot
is executed. The return-from-trap (rett) instruction increments the CWP, so that
it points to the window used before the trap happened (refer to Figure 3.4), and
enables traps again.

The PC points to the instruction that caused the trap (in this case a save instruc-
tion), which will be reexecuted after the trap. Since the WIM was adjusted to point
to the next window, this time, the save instruction can be done without causing a
trap, which leads to the state shown in 3.10.

Figure 3.10: Re-executing SAVE instruction.

26

3. Porting Zephyr

3.3.3 Window underflow trap

Similarly to the procedure mentioned in the section before, when a restore instruc-
tion executes, the current value of the CWP is compared against the WIM. If the
restore instruction would cause the CWP to point to an invalid register set, that is,
one whose corresponding WIM bit equals 1 (WIM[CWP] = 1), a window underflow
trap is asserted. [21]

From a logical point of view, the window underflow trap must restore the input and
local registers of a window, which where previously saved on the stack by either a
window overflow trap, or the context switching mechanism. The full algorithm can
be seen in appendix A.2.

The algorithm is broken down into different steps again to ease understanding.

Figure 3.11: Register file setup before window underflow.

The status of the register file before a window underflow is illustrated in Figure
3.11. The CWP is pointing to w3, and a stack frame is reserved for it on the task’s
stack. It can be seen, that there is another frame already on the stack (w0), which is
currently not in a register window. This situation occurs, for example, if previously
the task used up all the available register windows, so that a window overflow trap
was caused, which put the registers of w0 onto the task’s stack.

Figure 3.12: Register file setup before entering window underflow trap handler.

If another restore instruction is executed, the CWP aligns with the WIM, which

27

3. Porting Zephyr

causes a window underflow trap. Similar to the window overflow trap, the hardware
responds by decreasing the CWP by one (now pointing to w2), putting the PC and
nPC into registers %l1 and %l2 respectively, before calling the window underflow
trap handler routine installed in the trap table. This setup is shown in Figure 3.12.

2 set __leon_nwindows_min1, %l6
3 ld [%l6], %l7
4 rd %wim, %l3
5 sll %l3, 1, %l4
6 srl %l3, %l7, %l5
7 wr %l4, %l5, %wim
8 nop
9 nop

10 nop

Figure 3.13: Adjusting WIM.

As illustrated in Figure 3.13, as a first step, the WIM is rotated once to the left. The
mathematical background is the same as for the right rotation mentioned before in
the window overflow handler. The current set bit in WIM is shifted once to the left,
and number of windows minus one to the right. Those two numbers are combined
through logical OR and written back into WIM. Three nop instructions follow the
write to WIM, since it may take up to three clock cycles for the updated WIM to
propagate through the system.

12 restore
13 restore

Figure 3.14: Entering underflowed window.

Next, the window which needs to be filled with values from the stack memory must
be entered. Therefore, two consecutive restore instructions are issued as depicted
in Figure 3.14.

28

3. Porting Zephyr

15 ldd [%sp + 0x00], %l0
16 ldd [%sp + 0x08], %l2
17 ldd [%sp + 0x10], %l4
18 ldd [%sp + 0x18], %l6
19 ldd [%sp + 0x20], %i0
20 ldd [%sp + 0x28], %i2
21 ldd [%sp + 0x30], %i4
22 ldd [%sp + 0x38], %i6

Figure 3.15: Filling window with values from stack.

Since the frame pointer of the adjacent window is also the stack pointer of the
current window, %sp can be used to read the before saved register values from the
stack memory and load them into their respective registers. This step can easily be
understood by comparing Figure 3.15 with 3.7 from the window overflow handler
routine, since it is literally just the reversion of that step.

24 save
25 save

Figure 3.16: Going back to original trap window.

In order to continue the execution of the trapped task, the CWP must be adjusted
to point to the window that was entered upon the start of the window underflow
handler. Therefore, two consecutive save instructions are issued as illustrated in
Figure 3.16.

27 jmp %l1
28 rett %l2

Figure 3.17: Standard trap epilogue.

The trap epilogue (Figure 3.17) is the same as for the window overflow handler.

29

3. Porting Zephyr

3.4 Context switching

One of the most important abilities of an OS is to switch from one executing thread
to another. This mechanism allows for multiple different processing jobs to run
on a single execution platform. At this stage in the porting process, a cooperative
context switching mechanism is added to the architecture port. At a later stage,
this algorithm is extended to allow for preemptive context switches as well.

Whenever the currently running thread decides to give up executing (e.g. by issuing
a call to k_yield(), or trying to get access to a shared resource (semaphore, mutex,
etc.) that is already in use), the operating system routine

unsigned int __swap(int key)

is called internally. The argument key is the current interrupt level, which will be
restored once the current thread starts executing again in the future.

In order to illustrate the algorithm, it is assumed, that the current running thread
(Task A) is yielding, and another thread (Task B) is the next, ready to run thread,
waiting to start executing. The algorithm will only be presented visually here, the
respective code can be found in Appendix A.3.

Figure 3.18: Task A is yielding to Task B.

Upon entering the __swap routine, Task A has been running for a while, and
is currently using the first three register windows. As can be seen in Figure 3.18,
another save instruction would cause a window overflow trap. Each task has a
certain memory area reserved as its stack, and a Task Control Block (TCB), where
important task parameters (name, priority, etc.) are saved. Tasks can be uniquely
distinguished by their TCBs, therefore, the kernel holds a reference to all tasks in
the system in a queue-like structure.

30

3. Porting Zephyr

Figure 3.19: The Kernel structure holds pointers to the TCBs of Task A and
Task B.

The kernel structure offers two entries, which are important for the context switching
algorithm. There is a pointer to the TCB of the current running task, and a pointer
to a queue with all tasks, that are currently ready to run. The tasks in this queue
are ordered according to the used scheduling policy (e.g. rate monotonic). The first
element of this queue therefore points to the TCB of the task, that shall take over
the Central Processing Unit (CPU) next. In Figure 3.19, this first element of the
queue is referred to as Next Task.

Figure 3.20: Task A’s context is saved in its TCB.

As a first step, the context of the currently running task is saved in its TCB. The
context of a task includes:

• The input registers %i0 - %i7 of the current window
• The local registers %l0 - %l7 of the current window

31

3. Porting Zephyr

• The output registers %o6 and %o7 of the current window
• The PSR
• The key argument provided to the __swap routine
• The standard return value for the swap method

The standard return value is used as a way to indicate to a task, that certain states
might have changed while the task was out of execution. It is used internally by the
OS. The reason for only saving the output registers %o6 (the stackpointer) and
%o7 (the return address for the most recent call instruction) is, that all other output
registers are volatile across function calls. Since the context switch is cooperative,
these registers, together with the %y and the global registers, do not have to be
considered. In the given example, illustrated in Figure 3.20, the respective contents
of w2 are saved in Task A’s TCB, together with the PSR, key, and standard return
value.

Figure 3.21: Window saving loop.

After storing the context, there might be multiple windows left, which were used
by Task A. In a loop, these register windows are stored to the task’s stack memory,
similar to a repeated window overflow. Before going into the loop, traps must be
disabled (since the CWP has to be manipulated to access the different windows).

The algorithm checks before each restore instruction, if switching to the preceding
window would cause a window underflow trap. In that case, all used register windows
have been stored to the stack memory, and Task A is therefore fully removed from
the execution environment.

32

3. Porting Zephyr

Figure 3.22: Setting new Current Task pointer.

After leaving the register window saving loop, the CWP is restored and the WIM is
set to the preceding window. This is a stylistic choice, one could also just leave the
CWP pointing to the latest used window during the saving loop.

At this stage, Task A is fully removed from the execution environment, and therefore
no reference to its TCB is needed anymore. Thus, the Current Task field in the kernel
structure can be updated to point to the TCB of the next to run task (see Figure
3.22).

Figure 3.22 shows the final configuration of the register file after saving all register
windows, and resetting CWP and WIM.

Figure 3.23: Filling in Task B’s context into the register window.

From here on, the new task (Task B) needs to be put into an executable state.
Therefore, the Task Context is loaded from the TCB of Task B. The respective
contents of the saved register window (%i0 - %i7, %l0 - %l7, %o6, %o7) are

33

3. Porting Zephyr

loaded into the current window, the PSR is restored (with adjusted CWP, this also
enables traps again), the key is used to set the correct interrupt level, and the return
value for the __swap function is set according to the value saved in the TCB.

Figure 3.24: Task B is switched in and ready to run.

As can be seen in Figure 3.24, filling the current window with the register values from
the TCB automatically also sets the correct pointers to the task’s stack memory. At
this stage, the __swap routine can issue a jmp instruction to continue executing
Task B.

It is worth mentioning, that only one (i.e. the most recent) window is restored for
switching in a new task. That makes it clear, why the WIM has been reset before. If
the newly switched in task issues a restore operation, a window underflow trap will
restore the preceding window. This has multiple advantages, such as a deterministic
timing behaviour for switching in tasks (OBSERVE: the switching out of a task is
not deterministic, since the number of windows to store in the saving loop cannot
be known prior to runtime).

3.5 Thread creation

After introducing the context switching algorithm in the previous section, it is time
to add the ability to create new threads. This is part of the architecture port, since
the context of a task is architecture dependent. Internally, a new thread is created
by the operating system by calling the following function:

void _new_thread(struct k_thread *thread, k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t thread_func,
void *parameter1, void *parameter2, void *parameter3,
int priority, unsigned int options)

34

3. Porting Zephyr

This function must be implemented by the architecture port. Only a high level
description of the different steps is given here:

1. The task’s stack memory must be allocated according to stack_size
2. The stack memory pointer stack must be pointed to the task’s stack
3. The internal OS function _new_thread_init must be called to register the

task’s TCB within the OS
4. The context (as described in 3.4) in the task’s TCB must be set up as if the

task was switched out by the __swap routine

By setting up the context field in the task’s TCB as if the task was switched out by
the context switching mechanism, it can be switched in by the very same when the
task is ready to run.

3.6 Device drivers

The amount of device drivers included in a final application depends on the require-
ments of said application. Zephyr supports a wide range of high level drivers (e.g.
communication stacks like Bluetooth, CAN, I2C, etc.), which can be added before
compilation through the kconfig1 system.

It is debatable, if these device drivers are actually part of the operating system, or
if they should be seen as add-on libraries.

For a functional port of the RTOS, only the drivers for two distinct peripherals are
needed. These are a driver for the interrupt controller of the processor, and the
timer, which will be presented in the following sections.

3.6.1 Interrupt controller

As mentioned in section 2.2.1.2, whenever an interrupting trap happens, the trap
table dispatch mechanism will load the interrupt trap handler routine according
to the interrupt line that was triggered. It is a possibility, to put different trap
handlers for different interrupt lines into the mentioned subtable directly. However,
this would mean, that the respective interrupt service routine is tied to that specific
interrupt line.

The IRQMP [9] interrupt controller comes with the ability, to dynamically map a
wider range of interrupt request lines into the 16 interrupt levels available at the
processor side.

1Kconfig is a configuration system, which was originally developed for the Linux kernel. It lets
the user choose different configuration options, either through a supplied .config file, or through a
graphical user interface (menuconfig)

35

3. Porting Zephyr

In order to facilitate the dynamic mapping feature, and to make it possible to add
interrupt service routines at runtime, all 16 entries of the subtable in the trap table
will point to the same interrupt dispatching routine, which will configure the system
for interrupt execution, and then load the respective interrupt handler. The full
code of the interrupt dispatcher is shown in Appendix A.4. Here, only a high level
description of the algorithm is given:

1. As with any other trap, the interrupt will cause the CWP to be decremented
by one. If this means, that CWP now points to an invalid window, do a manual
window overflow

2. Create a special interrupt stack frame on the interrupted task’s stack, where
all registers are saved, that are volatile across function calls (global registers
%g1 - %g5, input registers %i0 - %i7, %y)

3. Switch to the system’s dedicated interrupt stack
4. Raise PIL so that no other interrupt can be issued while the current one is

executing
5. Enable traps
6. Use the trap type in %l3 to find the correct interrupt service routine and

execute it
7. If preemption is enabled, check if a context switch must be issued, and if so,

call __swap
8. Recreate the previous state by setting the volatile registers from the values in

the interrupt stack frame
9. If returning from trap would cause CWP to point to an invalid window, do a

manual window underflow
10. Return from trap

Step 6 can be done in a high level C function, by using the trap type to find the
respective interrupt service routine in a linked list. This makes it easy, to include
new service routines during runtime.

3.6.2 Timer

The timer device driver is used to generate the RTOS tick interrupt, which can be
seen as the heart beat of the operating system.

There are three important routines, that must be implemented by the architecture
port.

static void _timer_isr(void* arg)

This method is the actual interrupt service routine, which will be called every time
the counter value for the used timer underflows. All this function does is clearing
the respective interrupt pending bit and calling z_clock_announce() to inform
the kernel about the time that has progressed.

36

3. Porting Zephyr

uint32_t z_clock_elapsed(void)

A call to z_clock_elapsed returns the number of ticks, that occurred since the
last time the current tick value was announced by the timer driver.

uint32_t z_clock_driver_init(struct device *device)

This function is used to initialise the timer driver. The device structure holds
pointers to the configuration registers of the timer peripheral. Within this function,
the pointer to _timer_isr is added to the linked list of interrupt service routines
mentioned in section 3.6.1.

3.7 CPU idling

Whenever there is no thread, that is ready to take over the CPU, the context
switching mechanism switches in an idle task, which is automatically created by
the RTOS during system boot up. It is possible to define a job, that shall be done
whenever the system is idle, otherwise, the system can either be kept in a spinning
state (i.e. an infinite loop), or be put into a power saving mode.

The SPARC ISA does not define a dedicated power saving mode, however, the LEON
can be configured to include such a feature. If available on the respective hardware
implementation, these features can be added in the SoC port. For a generic SPARC
implementation, the following function is included in the architecture port:

void __weak k_cpu_idle(void)
{

/* Do nothing but unconditionally unlock interrupts and return to the
* caller.
*/

leon_set_pil_inline(0);
}

The function is defined with the __weak attribute, so that it can be overwritten
by an implementation in the SoC port. As specified in [6], the GR716 offers a low
power mode by writing a zero value into %asr19:

static ALWAYS_INLINE void leon_idle(unsigned int key)
{

irq_unlock(key);
__asm__ volatile("wr %g0, %asr19");

}

void k_cpu_idle(void)
{

leon_idle(0);
}

37

3. Porting Zephyr

Calling leon_idle with argument 0 causes all interrupt lines to be unlocked, so that
any interrupt (especially the timer tick interrupt) can wake up the processor again.

3.8 Linker scripts and toolchain

Since Cobham Gaisler offers a GCC based development environment ([5]) for the
LEON3 processor core, the cross-compile mechanism offered by the Zephyr build
system can be used. This is done by setting two different environment variables,
before issuing any commands of the build system:

export ZEPHYR_TOOLCHAIN_VARIANT=cross-compile
export CROSS_COMPILE=/opt/bcc-2.0.5-gcc/bin/sparc-gaisler-elf-

The second line of the above bash code snippet must be adjusted to point to the
bin folder of the installed BCC compiler [5].

The linker script is used to "glue together" the final application. It is possible to
divide the linker script into different parts, one for the architecture, one for the
specific SoC, and one for the board in use. The Zephyr build system will look for a
linker script in the board folder first, if none is found there, it will continue looking
in the SoC folder, and the architecture folder, consecutively.

The linker script is also responsible for setting up the application in a way, so that
it can be loaded into the microcontroller later on (e.g. by setting the entry point as
described in section 3.2).

38

CHAPTER 4

Window Partitioning

The SPARC ISA only specifies, that the number of available register windows must
be between 2 and 32. Most commonly, processor designs based on the SPARC spec-
ification feature 8 windows, which has empirically proven to be a good compromise
between processor design complexity and typical function call depths.

Especially with the GR716 in mind (which features 31 register windows), a different
approach to context switching might be advisable, since in the worst case, there
could be 30 windows (one is always marked as invalid), that need to be saved to a
task’s stack when the task is switched out by the scheduler.

Thus, the LEON3 can be configured to include a window partitioning mechanism.
As described in [9], the ancillary state register %asr20 can be used to separate the
register window into multiple, independent parts. Register %asr20 features a 5
bit field, which encodes the start window of the partition, and a 5 bit field for the
maximum number of CWP within this partition (i.e. size of the partition minus
one).

By changing these fields in %asr20, the output registers of the last register window
of the partition are mapped to the input registers of the first window, effectively
creating a (smaller) register window circle. Through this feature, it is possible to
divide the overall windowed register file into multiple partitions.

In the following two sections, the interrupt trap handler, and the context switching
algorithm are adapted to make use of the window partitioning mechanism.

39

4. Window Partitioning

4.1 Interrupt handling

The algorithm described in section A.4 is changed in the following way:

1. Check if we are in the invalid window, if so, do a manual window overflow
2. Save the global registers and%y in an interrupt stack frame on the interrupted

task’s stack (the input registers do not have to be saved, since the rest of the
ISR will run in a dedicated partition)

3. Store the current CWP and WIM in the TCB of the interrupted task
4. Switch to dedicated interrupt partition
5. Setup stackpointer to point to system’s interrupt stack
6. Look up ISR for the given trap type and execute it
7. Switch back to task partition (and set up CWP and WIM again)
8. If preemption is enabled, check if a context switch is needed, and if so, call

__swap
9. Reinstall values from interrupt stack frame
10. If returning from trap would cause the CWP to align with the invalid window,

do a manual window underflow
11. Return from trap

The advantage of running the ISR in a dedicated partition is the deterministic
way of execution. Before, the performance of an ISR was dependent on how many
unused windows there were still left. In the worst case (i.e. when the interrupt
trap already enters the invalid window) each subroutine call in the ISR will cause
a window overflow trap, which decreases the performance of the interrupt routine
significantly. By choosing the size of the interrupt partition according to the ISR
with the deepest call depth, it can be guaranteed, that all ISRs can run without a
single window overflow. The code for the interrupt trap with window partitioning
is shown in Appendix A.6.

4.2 Context switching

Similar to dedicating a partition to interrupt handling, which was presented in the
previous section, the remaining part of the register window might be further divided.
By creating dedicated partitions for different tasks, the context switching algorithm
can be simplified for the case, that the scheduler shall transfer execution to a task,
that has a partition assigned to it.

To understand, how this partitioning simplifies context switching, the principle idea
is presented in the following section. The code sample for this algorithm is given in
Appendix A.5.

40

4. Window Partitioning

Figure 4.1: Initial state before context switching. Partition P1 is dedicated to
Task A, partition P2 is dedicated to Task B.

Figure 4.1 demonstrates the state of the system at the beginning of __swap. Task
A has been running in its dedicated partition P1, and is yielding. The scheduler
shall now transfer execution to Task B, which has been running previously in its
own dedicated partition P2.

Figure 4.2: Getting a reference to currently running and next to run task.

As a first step, a reference to the TCB of the currently running task’s and the next
to run task’s TCB is taken from the kernel structure as shown in Figure 4.2.

41

4. Window Partitioning

Figure 4.3: Saving the task context.

The CWP, the WIM, the standard return value, and the PSR are saved as Task A’s
context. No other values have to be saved, since Task A has its own partition dedi-
cated to it, so that the local and input registers can just remain in their respective
register window. This step is shown in Figure 4.3.

Figure 4.4: Switching partitions.

Now the scheduler can switch to Task B’s dedicated partition (Figure 4.4).

42

4. Window Partitioning

Figure 4.5: Setting up Task B for execution.

Finally, the global CWP and WIM can be set according to the values saved in Task
B’s TCB. At this stage, Task B is ready to run.

It is clear, that the overall complexity of the context switching mechanism was
notably reduced by introducing the partitioning feature. Not a single window had
to be written out to or loaded from a task’s stack memory, which (as shown in
section 6) will greatly reduce the time it takes to switch from one execution thread
to another.

The above case only covers the context switch between tasks, which are both running
in dedicated partitions. If the overall system only has a very limited set of tasks, it
might be feasible to create partitions for each of them. The current implementation
offers up to two dedicated partitions, and one obligatory shared partition.

All tasks, which do not have an assigned partition, will run in this shared partition.
The implementation of the context switching algorithm was done in a way to achieve
lazy context switching behaviour. This means, that upon switching from the shared
partition to a dedicated one, the task running in the shared partition will remain
there. If at a later stage, execution is transferred back to the task currently in
the shared partition, this context switch has the same timing behaviour as if this
task would have its own partition (since it is already present in the shared one).
Only if another task (i.e. one that is neither in a dedicated nor currently in the
shared partition) shall be switched in, the task present in the shared partition will
be flushed out, and the new task will be set in. This case is exactly the same as the
normal context switch described in section 3.4.

It should be mentioned, that the thread creation mechanism (see section 3.5) must
also be altered to facilitate the window partitioning feature. Therefore, the options
field in the thread creation function is used to define two new options: K_PART_1
and K_PART_2. If a task is created with either option (and the window parti-

43

4. Window Partitioning

tioning is enabled through kconfig), it will be put directly into its partition by the
thread creation mechanism.

To see an example of how to set up an application with window partitioning, refer
to Appendix B.

44

CHAPTER 5

Performance Evaluation

There are two different aspects for evaluating Zephyr on the LEON platform. First,
it must be verified, that the port itself is running correctly on the new platform.
Consecutively, it can be evaluated how well the port is performing.

The functional verification of the port is done by using Zephyr’s testing framework
Ztest [20]. Depending on the feature list, that is selected by the architecture’s
configuration file, Ztest selects different test scenarios out of a pool of test cases,
builds the respective code projects, and loads and evaluates the output through the
use of a simulator.

For the given platform, Cobham Gaisler’s cycle-accurate instruction simulator TSIM
[8] has been used extensively during the development process, and finally for the
evaluation of the correct functioning of the operating system.

In order to evaluate, how well the system is performing, a measurable quantity
has to be defined. For the given architecture port (especially keeping the window
partitioning feature in mind), a benchmarking for the context switch timing and the
interrupt service timing has been performed. These two benchmark tests were done
on the GR716 Mini Board [7].

5.1 LEON benchmarking

In order to evaluate the performance of Zephyr on the GR716, a benchmarking test
was performed. This benchmarking test consisted of the sampling of context switch-

45

5. Performance Evaluation

ing times, and interrupt latency measurements. The GR716 has tightly-coupled,
constant access-time, SRAM for instructions and data [6]. This was used during all
performance evaluations. It means, that there are no temporal or spatial variations
in execution times caused by cache misses.

For measuring the context switching time, two instances of the same task function
were created. Within the task function, an alternating amount of save instructions
were issued (to simulate different function call depths), before calling k_yield to
transfer control to the other task. To allow a comparison between different execution
scenarios, three different test cases were evaluated. First, the test was done without
partitioning enabled. Then, one task was put into a dedicated partition (8 windows),
the other was running in the shared partition (also 8 windows). And finally, both
tasks got a dedicated partition (with 8 windows each) assigned.

For measuring the interrupt latency, the timestamping feature offered by the inter-
rupt controller [6] is used. When activated, the timestamp automatically records the
assertion and acknowledge time of a predefined interrupt. In the interrupt trap han-
dler, those numbers are read out together with the current cycle count just before
the respective ISR is entered.

For the purpose of this evaluation, the timestamp has been configured to trigger
whenever the timer tick interrupt line is asserted.

46

CHAPTER 6

Benchmarking Results

Figure 6.1 illustrates the measured context switching times for the three different
test cases mentioned in section 5:

Figure 6.1: Context switch timing benchmark results.

47

6. Benchmarking Results

• both tasks running in the same, unpartitioned register file
• one task assigned to a dedicated partition and the other task running in the

shared partition
• both tasks assigned to dedicated partitions

As the amount of windows in use changes each time before a task yields, the context
switch timing fluctuates when not using the partitioning feature (yellow curve). This
is due to the window saving loop having to save a different amount of windows every
time.

When assigning both tasks to a dedicated partition (red curve), the context switch-
ing time remains constant after the first switch to a dedicated partition (first context
switch is done from the main context (in the shared partition) to the first task run-
ning in a dedicated partition). Since there are only context switches between the
two dedicated partitions afterwards, the context switching time is constant from the
second instant on.

Of special interest is the case of one task running in a dedicated partition, and one
task running in the shared one (green curve). As can be seen in Figure 6.1, it shows
almost the same performance as the aforementioned case of having two dedicated
partitions. This behaviour is achieved through the lazy context switching strategy
mentioned in section 4.2. The one context switch, that is different (switch number
3 in Figure 6.1), is caused by the switch from the main context to the task context.
From here on, it has the same performance as if it was running in a dedicated
partition, since it never has to be removed from the shared partition again.

Overall, it is clearly visible, that the window partitioning feature greatly increases
the performance of the context switching mechanism. It shall be noted here, that
the maximum amount of windows, which had to be saved in these test cases, was 7
windows. In the case of an unpartitioned register file, and if a task would have a very
high call depth, up to 29 windows might have to be saved during the window saving
loop, which would yield an even worse performance when not using partitioning.

For the evaluation of interrupt latency, two different times are of interest. First,
the time between the assertion of the interrupt, and the acknowledgement by the
processor is measured through the timestamp feature mentioned in chapter 5. The
recorded results are illustrated in Figure 6.2. It can be seen, that there is no dif-
ference between the recorded times with regards to partitioning, which is expected,
since the time between interrupt assertion and acknowledgement is purely depending
on the hardware.

The more interesting timing is the one between the acknowledgement by the pro-
cessor and the start of the ISR. The recorded times are shown in Figure 6.3. Here,
when using partitioning, the minimum and average times slightly increase compared
to the case without partitioning. This increase can be expected, since when using
partitioning, the added complexity of switching partitions must be accounted for.
The benefit of using partitioning, however, is clearly visible through the recorded

48

6. Benchmarking Results

Figure 6.2: Measured timing between timer interrupt assertion and acknowledge
for the cases without and with partitioning.

Figure 6.3: Measured timing between timer interrupt acknowledge and start of
ISR for the cases without and with partitioning.

49

6. Benchmarking Results

maximum times. This timing instant is caused, when the trap enters an invalid
window, which means, it has to perform a manual window overflow. This step is
the same for both the case with and without partitioning. As described in section
3.6.1, the ISR dispatching is done in a high level C function, therefore, an additional
window is used by the interrupt trap handler. When not using partitioning, calling
this high level C function will cause a window overflow trap, whose additional time
increases the maximum value shown in Figure 6.3. However, when using a suffi-
ciently sized interrupt partition (in this benchmarking 7 windows), the additional
call to a C function will work without a window overflow.

It is worth mentioning, that the above illustrated benchmarking only covers the
interrupt trap handler, not the ISR performance itself. Since, in the worst case,
every additional function call in the service routine would cause a window overflow,
the performance of the ISR will significantly decrease when not using partitioning.
The added penalty of window overflows can be circumvented by sizing the interrupt
partition appropriately for the respective application.

50

CHAPTER 7

Conclusion

The aim of this thesis project was to create a port of the Zephyr RTOS for the LEON
platform, which was previously not supported by this operating system. Through
the porting procedure detailed in section 3, a functional state of the operating system
was achieved.

Zephyr comes with an extensive testing framework, Ztest, mentioned in chapter
5. Depending on the architecture settings (e.g. the included peripherals), Ztest
automatically selects a number of tests to run whenever the tool is invoked.

The current implementation passes 84 out of the 91 selected tests. All test cases
that are failing, are due to unimplemented features, such as stack sentinel checking,
XIP, or POSIX compliance. The port has proven to be stable during all performed
tests and sample applications.

As shown in chapter 6, through the introduction of window partitioning, the per-
formance of the context switching mechanism could be increased significantly. It is
worth mentioning, that the current implementation only offers cooperative context
switching in a deterministic way (see chapter 8).

Overall, Zephyr is a good fit for the GR716, considering footprint and processing
capability.

51

7. Conclusion

52

CHAPTER 8

Future work

This section shall give a short overview of the next steps, that could be taken to
enhance the current version of the Zephyr port for the LEON platform.

• Device drivers

During this thesis project, only a minimal amount of device drivers was developed.
Currently, only the IRQMP interrupt controller, the timer, and a basic UART driver
are included. Especially drivers for common communication stacks (e.g. CAN), and
the memory management unit could be interesting to include.

• Improve interrupt handling

The current implementation of the interrupt handler trap with partitioning still
needs to check, if the trap causes the CWP to point to an invalid window, and if so,
has to issue a manual window overflow before executing the actual interrupt han-
dling. This has multiple disadvantages, such as a non-deterministic timing behaviour
of the trap handler itself, and further also a change in timing for the interrupted
task (since it will have to do a window underflow at a certain point to gain back the
data).

In theory, there is no problem using the invalid window of a task partition to switch
to the interrupt partition, issues occur when a call to __swap is done at the end
of the interrupt. This function has an input parameter, which will overwrite data
in the adjacent window of the task partition. It might be possible, to rewrite the
interrupt trap handler and the context switching routine to only use global registers,
and calling __swap from within the interrupt partition.

53

8. Future work

Support for interrupt nesting could also be implemented.

• SoC port for GR712

Currently, the only specific LEON implementation supported is the GR716. Other
processors, such as the GR712, would need their own SoC port. This would be
especially interesting, since the GR716 is a single-core, and the GR712 a dual-core
processor. Thus, parts of the architecture port will most likely need adjustment to
allow for Symmetric-Multi-Processing (SMP) as well.

54

Bibliography

[1] Architecture Porting Guide. 2019. url: https://docs.zephyrproject.org/
latest/guides/porting/arch.html (visited on 06/03/2019).

[2] M. Barr and A. Massa. Programming Embedded Systems: With C and GNU
Development Tools. O’Reilly Media, 2006.

[3] B.J. Catanzaro. The SPARC Technical Papers. Sun Technical Reference Li-
brary. Springer New York, 2012. url: https://books.google.se/books?
id=ESLoBwAAQBAJ.

[4] Jens Eickhoff.Onboard Computers, Onboard Software and Satellite Operations:
An Introduction. Springer Publishing Company, Incorporated, 2011.

[5] Cobham Gaisler. BCC User’s Manual. 2019. url: https://www.gaisler.
com/doc/bcc2.pdf (visited on 04/18/2019).

[6] Cobham Gaisler. GR716 - 2019 Advanced Data Sheet and User Manual. 2019.
url: https://www.gaisler.com/doc/gr716/gr716-ds-um.pdf (visited on
05/29/2019).

[7] Cobham Gaisler. GR716-MINI Development Board User’s Manual. 2019. url:
https://www.gaisler.com/doc/gr716/GR716-MINI_user_manual.pdf
(visited on 08/20/2019).

[8] Cobham Gaisler. TSIM2 Simulator User’s Manual. 2019. url: https://www.
gaisler.com/doc/tsim-2.0.64.pdf (visited on 05/29/2019).

[9] Gobham Gaisler. GRLIB IP Library User’s Manual. 2018. url: https://
www.gaisler.com/products/grlib/grlib.pdf (visited on 05/10/2019).

[10] Getting Started Guide. 2019. url: https : / / docs . zephyrproject . org /
latest/getting_started/index.html (visited on 08/16/2019).

[11] Introduction. 2019. url: https : / / docs . zephyrproject . org / latest /
introduction/index.html (visited on 07/15/2019).

[12] David Keppel. Register Windows and User-Space Threads on the SPARC.
Tech. rep. Department of Computer Science and Engineering University of
Washington, 1991.

55

https://docs.zephyrproject.org/latest/guides/porting/arch.html
https://docs.zephyrproject.org/latest/guides/porting/arch.html
https://books.google.se/books?id=ESLoBwAAQBAJ
https://books.google.se/books?id=ESLoBwAAQBAJ
https://www.gaisler.com/doc/bcc2.pdf
https://www.gaisler.com/doc/bcc2.pdf
https://www.gaisler.com/doc/gr716/gr716-ds-um.pdf
https://www.gaisler.com/doc/gr716/GR716-MINI_user_manual.pdf
https://www.gaisler.com/doc/tsim-2.0.64.pdf
https://www.gaisler.com/doc/tsim-2.0.64.pdf
https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grlib.pdf
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/introduction/index.html

Bibliography

[13] Jochen Liedtke. Lazy Context Switching Algorithms for Sparc-like Processors.
Tech. rep. German National Research Center for Computer Science, 1993.

[14] Meet Linux’s little brother: Zephyr, a tiny open-source IoT RTOS. 2016. url:
http : / / linuxgizmos . com / zephyr - a - tiny - open - source - iot - rtos/
(visited on 07/02/2019).

[15] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. 3rd. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2007.

[16] K.G. Shin and P. Ramanathan. “Real-time computing: a new discipline of
computer science and engineering”. In: Proceedings of the IEEE 82, 1 (1994),
pp. 6–24. url: http://ieeexplore.ieee.org/iel1/5/6554/00259423.pdf.

[17] SPARC-V8 Suppliment. SPARC-V8 Embedded (V8E) Architecture Specifica-
tion. 1st. 1996.

[18] W. Stallings. Operating Systems: Internals and Design Principles. 4th. Pren-
tice Hall, 2001.

[19] SYSTEM V APPLICATION BINARY INTERFACE. SPARC Processor Sup-
plement. 3rd. 1996. url: https://www.gaisler.com/doc/sparc-abi.pdf
(visited on 05/29/2019).

[20] Test Framework. 2019. url: https://docs.zephyrproject.org/1.12.0/
subsystems/test/ztest.html (visited on 08/01/2019).

[21] The SPARC Architecture Manual. Version 8. SPARC International Inc. 535
Middlefield Road, Suite 210 Menlo Park, CA, 1992. url: https : / / www .
gaisler.com/doc/sparcv8.pdf (visited on 05/25/2019).

[22] WHAT IS THE ZEPHYR PROJECT? 2019. url: https://www.zephyrproject.
org/what-is-zephyr/ (visited on 05/15/2019).

[23] Wind River Welcomes Linux Foundation’s Zephyr Project. 2016. url: https:
/ / blogs . windriver . com / wind _ river _ blog / 2016 / 02 / wind - river -
welcomes-linux-foundations-zephyr-project.html (visited on 06/12/2019).

56

http://linuxgizmos.com/zephyr-a-tiny-open-source-iot-rtos/
http://ieeexplore.ieee.org/iel1/5/6554/00259423.pdf
https://www.gaisler.com/doc/sparc-abi.pdf
https://docs.zephyrproject.org/1.12.0/subsystems/test/ztest.html
https://docs.zephyrproject.org/1.12.0/subsystems/test/ztest.html
https://www.gaisler.com/doc/sparcv8.pdf
https://www.gaisler.com/doc/sparcv8.pdf
https://www.zephyrproject.org/what-is-zephyr/
https://www.zephyrproject.org/what-is-zephyr/
https://blogs.windriver.com/wind_river_blog/2016/02/wind-river-welcomes-linux-foundations-zephyr-project.html
https://blogs.windriver.com/wind_river_blog/2016/02/wind-river-welcomes-linux-foundations-zephyr-project.html
https://blogs.windriver.com/wind_river_blog/2016/02/wind-river-welcomes-linux-foundations-zephyr-project.html

APPENDIX A

Code Samples

57

A. Code Samples

A.1 Window Overflow
1 FUNC_BEGIN __leon_trap_window_overflow
2 save
3 std %l0, [%sp + 0x00]
4 std %l2, [%sp + 0x08]
5 std %l4, [%sp + 0x10]
6 std %l6, [%sp + 0x18]
7 std %i0, [%sp + 0x20]
8 std %i2, [%sp + 0x28]
9 std %i4, [%sp + 0x30]

10 std %i6, [%sp + 0x38]
11

12

13 set __leon_nwindows_min1, %l0
14 ld [%l0], %l1
15 rd %wim, %l3
16 sll %l3, %l1, %l2
17 srl %l3, 1, %l3
18 wr %l3, %l2, %wim
19 nop
20 nop
21 nop
22

23 restore
24

25 jmp %l1
26 rett %l2
27 FUNC_END __leon_trap_window_overflow

58

A. Code Samples

A.2 Window Underflow
1 FUNC_BEGIN __leon_trap_window_underflow
2 set __leon_nwindows_min1, %l6
3 ld [%l6], %l7
4 rd %wim, %l3
5 sll %l3, 1, %l4
6 srl %l3, %l7, %l5
7 wr %l4, %l5, %wim
8 nop
9 nop

10 nop
11

12 restore
13 restore
14

15 ldd [%sp + 0x00], %l0
16 ldd [%sp + 0x08], %l2
17 ldd [%sp + 0x10], %l4
18 ldd [%sp + 0x18], %l6
19 ldd [%sp + 0x20], %i0
20 ldd [%sp + 0x28], %i2
21 ldd [%sp + 0x30], %i4
22 ldd [%sp + 0x38], %i6
23

24 save
25 save
26

27 jmp %l1
28 rett %l2
29 FUNC_END __leon_trap_window_underflow

59

A. Code Samples

A.3 Context Switching
1 .section ".text"
2 .global __swap
3

4 /**
5 * Interrupts are already locked with key as argument to __swap.
6 * This is a leaf procedure, so only out registers
7 * can be used without saving their context first.
8 */
9

10 /* unsigned int __swap(unsigned int key) */
11 FUNC_BEGIN __swap
12

13 /**
14 * Get a reference to currently running and next to run
15 * thread context into %o1 and %o2.
16 */
17 sethi %hi(_kernel), %o3
18 or %o3, %lo(_kernel), %o3
19

20 ld [%o3 + _kernel_offset_to_current], %o1
21 ld [%o3 + _kernel_offset_to_ready_q_cache], %o2
22

23 /* put standard return value into arch structure */
24 sethi %hi(_k_neg_eagain), %o4
25 or %o4, %lo(_k_neg_eagain), %o4
26 ld [%o4], %o4
27 st %o4, [%o1 + _thread_offset_to_retval]
28

29 /* save all local registers */
30 std %l0, [%o1 + _thread_offset_to_l0_and_l1]
31 std %l2, [%o1 + _thread_offset_to_l2]
32 std %l4, [%o1 + _thread_offset_to_l4]
33 std %l6, [%o1 + _thread_offset_to_l6]
34

35 /* save all input registers */
36 std %i0, [%o1 + _thread_offset_to_i0]
37 std %i2, [%o1 + _thread_offset_to_i2]
38 std %i4, [%o1 + _thread_offset_to_i4]
39 std %i6, [%o1 + _thread_offset_to_i6]
40

41 /* save output registers */
42 std %o6, [%o1 + _thread_offset_to_o6]
43

44 rd %psr, %o4
45 st %o4, [%o1 + _thread_offset_to_psr]
46

47 st %o0, [%o1 + _thread_offset_to_key]
48

49 and %o4, PSR_CWP, %g3 /* %g3 = CWP */
50 andn %o4, PSR_ET, %g1 /* %g1 = psr with traps disabled */
51 wr %g1, %psr /* disable traps */
52 rd %wim, %g2 /* %g2 = wim */

60

A. Code Samples

53 mov 1, %g4
54 sll %g4, %g3, %g4 /* %g4 = wim mask for CW invalid */
55

56

57 /* load number of windows -1 into g7 */
58 set __leon_nwindows_min1, %g7
59 ld [%g7], %g7
60

61 save_frame_loop:
62 sll %g4, 1, %g5 /* rotate wim left by 1 */
63 srl %g4, %g7, %g4 /* %g7 = NWINDOWS-1 */
64 or %g4, %g5, %g4 /* %g4 = wim if we do one restore */
65

66 /* if restore would not underflow, continue */
67 andcc %g4, %g2, %g0 /* window to flush? */
68 bnz done_flushing /* continue */
69 nop
70

71 restore /* go one window back */
72

73 /* essentially the same as window overflow */
74 std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET]
75 std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET]
76 std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET]
77 std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET]
78

79 std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET]
80 std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET]
81 std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET]
82 std %i6, [%sp + CPU_STACK_FRAME_I6_OFFSET]
83

84 ba save_frame_loop
85 nop
86

87 done_flushing:
88 /**
89 * wait three instructions after the write to PSR before
90 * using non-global registers or instructions affecting the CWP
91 */
92 wr %g1, %psr /* restore cwp */
93 add %g3, 1, %g2 /* calculate desired wim */
94 cmp %g2, %g7 /* check if wim is in range */
95 bg,a wim_overflow
96 mov 0, %g2
97

98 wim_overflow:
99

100 mov 1, %g4
101 sll %g4, %g2, %g4 /* %g4 = new wim */
102 wr %g4, %wim
103

104 /* put new thread context into current */
105 st %o2, [%o3 + _kernel_offset_to_current]
106

107 /* restore local registers */

61

A. Code Samples

108 ldd [%o2 + _thread_offset_to_l0_and_l1], %l0
109 ldd [%o2 + _thread_offset_to_l2], %l2
110 ldd [%o2 + _thread_offset_to_l4], %l4
111 ldd [%o2 + _thread_offset_to_l6], %l6
112

113 /* restore input registers */
114 ldd [%o2 + _thread_offset_to_i0], %i0
115 ldd [%o2 + _thread_offset_to_i2], %i2
116 ldd [%o2 + _thread_offset_to_i4], %i4
117 ldd [%o2 + _thread_offset_to_i6], %i6
118

119 /* restore output registers */
120 ldd [%o2 + _thread_offset_to_o6], %o6
121

122 /* get function return value */
123 ld [%o2 + _thread_offset_to_retval], %o0
124

125 /* %g1 = new thread psr */
126 ld [%o2 + _thread_offset_to_psr], %g1
127

128 /* reset PIL to key */
129 ld [%o2 + _thread_offset_to_key], %o4
130

131 sll %o4, PSR_PIL_BIT, %o4
132 andn %g1, PSR_PIL, %o3
133 or %o3, %o4, %g1
134

135 andn %g1, PSR_CWP, %g1 /* psr without cwp */
136 or %g1, %g3, %g1 /* psr with new cwp */
137 wr %g1, %psr /* restore status register and ET */
138 nop
139 nop
140 nop
141

142 /* jump into thread */
143 jmp %o7 + 8
144 nop
145

146 FUNC_END __swap

62

A. Code Samples

A.4 Interrupt Trap
1 /*
2 * Interrupt trap handler
3 *
4 * - IU state is saved and restored
5 * - FPU state is not saved or touched
6 * - Interrupt nesting is not supported. (Future Work)
7 *
8 * On entry:
9 * %l0: psr

10 * %l1: pc
11 * %l2: npc
12 * %l3: SPARC interrupt request level (bp_IRL)
13 */
14 FUNC_BEGIN __leon_trap_interrupt_svt
15 /* We came from an SVT trap dispatcher with trap type in %l6 */
16 sub %l6, 0x10, %l3
17

18 FUNC_BEGIN __leon_trap_interrupt
19 /* %g2, %g3 used during manual window overflow */
20 mov %g2, %l4
21 mov %g3, %l5
22

23 /* We are in our own register window, which could be the invalid one.
24 * If so, save the next.
25 */
26 rd %wim, %g2
27 srl %g2, %l0, %g3
28 cmp %g3, 1
29 bne .Lwodone
30 nop
31

32 /* Manual window overflow */
33 sethi %hi(__leon_nwindows_min1), %g3
34 ld [%g3 + %lo(__leon_nwindows_min1)], %g3
35 sll %g2, %g3, %g3
36 srl %g2, 1, %g2
37 or %g2, %g3, %g2
38

39 /* Enter window to save */
40 save
41

42 /* set new wim */
43 mov %g2, %wim
44 nop
45 nop
46 nop
47

48 /* Put registers on stack */
49 std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET]
50 std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET]
51 std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET]
52 std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET]

63

A. Code Samples

53

54 std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET]
55 std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET]
56 std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET]
57 std %i6, [%sp + CPU_STACK_FRAME_I6_OFFSET]
58

59 /* exit window */
60 restore
61 nop
62

63 .Lwodone:
64 /* ISR context save */
65

66 /*
67 * At this point:
68 * %l4 = old %g2
69 * %l5 = old %g3
70 */
71

72 /*
73 * Save the state of the interrupted task
74 * including global registers on the task stack
75 *
76 * Note: this could also be done in the callee_saved structure
77 */
78

79 /* get stack to safe isr context
80 * includes normal frame for window traps
81 */
82 sub %fp, CPU_INTERRUPT_FRAME_SIZE, %sp
83

84 std %l0, [%sp + ISF_PSR_OFFSET] ! psr, PC
85 st %l2, [%sp + ISF_NPC_OFFSET] ! nPC
86 st %g1, [%sp + ISF_G1_OFFSET] ! g1
87 std %l4, [%sp + ISF_G2_OFFSET] ! g2, g3
88 std %g4, [%sp + ISF_G4_OFFSET] ! g4, g5
89

90 std %i0, [%sp + ISF_I0_OFFSET] ! i0, i1
91 std %i2, [%sp + ISF_I2_OFFSET] ! i2, i3
92 std %i4, [%sp + ISF_I4_OFFSET] ! i4, i5
93 std %i6, [%sp + ISF_I6_OFFSET] ! fp, i7
94

95 rd %y, %g1
96 st %g1, [%sp + ISF_Y_OFFSET] ! y
97

98 /* Get a reference to _kernel */
99 sethi %hi(_kernel), %g2

100 or %g2, %lo(_kernel), %g2
101

102 /* switch to interrupt stack */
103 mov %sp, %fp
104 ld [%g2 + _kernel_offset_to_irq_stack], %sp
105

106 /* Allocate full C stack frame */
107 sub %sp, SPARC_MINIMUM_STACK_FRAME_SIZE, %sp

64

A. Code Samples

108

109 /* TODO: Interrupt nesting, for now disable interrupts */
110 mov %15, %o2
111 sll %o2, PSR_PIL_BIT, %o2
112 andn %l0, PSR_PIL, %o3
113 or %o3, %o2, %o0
114

115 /* Enable traps */
116 wr %o0, PSR_ET, %psr
117 nop
118 nop
119 nop
120

121 /** ISR DISPACH BEGIN **/
122 /* %l3 holds interrupt request line */
123 mov %l3, %o0
124

125 call _enter_irq
126 nop
127 /** ISR DISPATCH END **/
128

129 /* Interrupts are still disabled */
130

131 /* TODO: Nesting */
132

133 /* switch back to interrupted task stack */
134 mov %fp, %sp
135 add %fp, CPU_INTERRUPT_FRAME_SIZE, %fp
136

137 #ifdef CONFIG_PREEMPT_ENABLED
138 /* Determine if context switch in nescessary */
139 sethi %hi(_kernel), %l5
140 or %l5, %lo(_kernel), %l5
141

142 ld [%l5 + _kernel_offset_to_current], %l6
143 ld [%l5 + _kernel_offset_to_ready_q_cache], %l7
144

145 /* See if current and ready context are the same */
146 cmp %l6, %l7
147 beq no_reschedule
148 nop
149

150 /* A context reschedule is required */
151 call __swap
152 mov 0xf, %o0 /* PIL = 15 */
153

154 no_reschedule:
155 #endif /* CONFIG_PREEMPT_ENABLED */
156

157 /* Interrupts are disabled still for this thread */
158

159 /* Reverse context save */
160 ld [%sp + ISF_Y_OFFSET], %g1
161 wr %g1, 0, %y
162

65

A. Code Samples

163 ldd [%sp + ISF_PSR_OFFSET], %l0 ! psr, PC
164 ld [%sp + ISF_NPC_OFFSET], %l2 ! nPC
165 rd %psr, %l3
166 and %l3, PSR_CWP, %l3 ! current CWP
167 andn %l0, PSR_CWP, %l0 ! rest of psr from task
168 or %l3, %l0, %l0
169 andn %l0, PSR_ET, %l0
170

171 mov %sp, %g1
172

173 ldd [%sp + ISF_G2_OFFSET], %g2
174 ldd [%sp + ISF_G4_OFFSET], %g4
175

176 ldd [%sp + ISF_I0_OFFSET], %i0
177 ldd [%sp + ISF_I2_OFFSET], %i2
178 ldd [%sp + ISF_I4_OFFSET], %i4
179 ldd [%sp + ISF_I6_OFFSET], %i6
180

181

182 /*
183 * Register usage
184 *
185 * Restored:
186 * All global registers except g1
187 * All input registers
188 *
189 * l0 = original psr
190 * l1 = resturn address (i.e. PC)
191 * l2 = nPC
192 * l3 = CWP
193 */
194

195 /* Disable traps */
196 mov %l0, %psr
197 nop
198 nop
199 nop
200

201 /* Determine if we must prepare the return window */
202 rd %wim, %l4
203 /* l6 := cwp + 1 */
204 add %l0, 1, %l6
205 and %l6, PSR_CWP, %l6
206 /* Handle wrap-around */
207 sethi %hi(__leon_nwindows), %l5
208 ld [%l5 + %lo(__leon_nwindows)], %l7
209 cmp %l6, %l7
210 bge,a .Lwrapok
211 mov 0, %l6
212

213

214 .Lwrapok:
215 /* %l5 := %wim >> (cpw +1) */
216 srl %l4, %l6, %l5
217 /* %l5 is 1 if (cwp+1) is an invalid window */

66

A. Code Samples

218 cmp %l5, 1
219 bne .Lwudone
220 nop
221

222 /* Manual window underflow */
223 /* %wim = rol(%wim) */
224 /* %l7 := __leon_nwindows - 1 */
225 sub %l7, 1, %l7
226 srl %l4, %l7, %l5
227 sll %l4, 1, %l4
228 wr %l4, %l5, %wim
229 nop
230 nop
231 nop
232

233 restore
234 ldd [%sp + CPU_STACK_FRAME_L0_OFFSET], %l0
235 ldd [%sp + CPU_STACK_FRAME_L2_OFFSET], %l2
236 ldd [%sp + CPU_STACK_FRAME_L4_OFFSET], %l4
237 ldd [%sp + CPU_STACK_FRAME_L6_OFFSET], %l6
238

239 ldd [%sp + CPU_STACK_FRAME_I0_OFFSET], %i0
240 ldd [%sp + CPU_STACK_FRAME_I2_OFFSET], %i2
241 ldd [%sp + CPU_STACK_FRAME_I4_OFFSET], %i4
242 ldd [%sp + CPU_STACK_FRAME_I6_OFFSET], %i6
243 save
244

245 /* Manual window underflow completed */
246

247 .Lwudone:
248 /* Restore %psr since we may have trashed condition codes */
249 /* also disables traps */
250 wr %l0, %psr
251 nop
252 nop
253 nop
254

255 /* restore g1 */
256 ld [%g1 + ISF_G1_OFFSET], %g1
257

258 jmp %l1
259 rett %l2
260

261 FUNC_END __leon_trap_interrupt
262 FUNC_END __leon_trap_interrupt_svt

67

A. Code Samples

A.5 Context Switching with Partitioning
.section ".text"
.global __swap
.global __setup_partition

/* unsigned int __swap(unsigned int key) */
FUNC_BEGIN __swap

set _kernel, %o3

/* Get a reference to current and next to run thread */
ld [%o3 + _kernel_offset_to_current], %o1
ld [%o3 + _kernel_offset_to_ready_q_cache], %o2

set _k_neg_eagain, %o4
ld [%o4], %o4
st %o4, [%o1 + _thread_offset_to_retval]

rd %psr, %o4
st %o4, [%o1 + _thread_offset_to_psr]

st %o0, [%o1 + _thread_offset_to_key]

and %o4, PSR_CWP, %g3 /* CWP */
andn %o4, PSR_ET, %g1 /* psr with traps disabled */
wr %g1, %psr /* DISABLE TRAPS */

rd %wim, %g2
st %g2, [%o1 + _thread_offset_to_wim]

ld [%o2 + _thread_offset_to_is_in_partition], %g1

cmp %g0, %g1
bne switch_partitions
nop

/* next to run thread is not in a partition right now */
/* switch to shared partition */
mov %o3, %g3

mov CONFIG_LEON_SHARED_PART_STWIN, %g5
sll %g5, ASR20_STWIN_BIT, %g5

mov CONFIG_LEON_SHARED_PART_CWPMAX, %g4
sll %g4, ASR20_CWPMAX_BIT, %g4

or %g5, %g4, %g5
mov %g5, %asr20
nop
nop
nop

/** Now in shared partition **/
/* get reference to thread that is currently in shared partition */

68

A. Code Samples

ld [%g3 + _kernel_offset_to_current_in_shared], %g4

cmp %g4, %g0
be done_flushing
nop

ld [%g4 + _thread_offset_to_psr], %g1
ld [%g4 + _thread_offset_to_wim], %g5

andn %g1, PSR_ET, %g1 /* psr with traps disabled */
wr %g1, %psr
wr %g5, %wim
nop
nop
nop

/* save all local registers */
std %l0, [%g4 + _thread_offset_to_l0_and_l1]
std %l2, [%g4 + _thread_offset_to_l2]
std %l4, [%g4 + _thread_offset_to_l4]
std %l6, [%g4 + _thread_offset_to_l6]

/* save all input registers */
std %i0, [%g4 + _thread_offset_to_i0]
std %i2, [%g4 + _thread_offset_to_i2]
std %i4, [%g4 + _thread_offset_to_i4]
std %i6, [%g4 + _thread_offset_to_i6]

/* save output registers */
std %o6, [%g4 + _thread_offset_to_o6]

mov %y, %o4
st %o4, [%g4 + _thread_offset_to_y]

and %g1, PSR_CWP, %g1
mov 1, %g7
sll %g7, %g1, %g7 /* wim mask for CW invalid */

set CONFIG_LEON_SHARED_PART_CWPMAX, %g2

save_frame_loop:
sll %g7, 1, %g1
srl %g7, %g2, %g7
or %g7, %g1, %g7

/* if restore would underflow, stop */
andcc %g7, %g5, %g0
bnz done_flushing

nop

restore

/* essentially the same as window overflow */
std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET]
std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET]

69

A. Code Samples

std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET]
std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET]

std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET]
std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET]
std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET]
std %i6, [%sp + CPU_STACK_FRAME_I6_OFFSET]

ba save_frame_loop
nop

done_flushing:

/* unset is_in_partition for flushed out thread */
st %g0, [%g4 + _thread_offset_to_is_in_partition]

/* set CWP to 0 and WIM to w1 */
rd %psr, %g1
and %g1, 0xffffffe0, %g1
wr %g1, %psr
mov 0x2, %wim
nop
nop
nop

/* put new thread context into current */
ld [%g3 + _kernel_offset_to_current], %o1
ld [%g3 + _kernel_offset_to_ready_q_cache], %o2

st %o2, [%g3 + _kernel_offset_to_current]
mov 1, %o1
st %o1, [%o2 + _thread_offset_to_is_in_partition]
st %o2, [%g3 + _kernel_offset_to_current_in_shared]

ldd [%o2 + _thread_offset_to_y], %o4
mov %o4, %y

/* restore local registers */
ldd [%o2 + _thread_offset_to_l0_and_l1], %l0
ldd [%o2 + _thread_offset_to_l2], %l2
ldd [%o2 + _thread_offset_to_l4], %l4
ldd [%o2 + _thread_offset_to_l6], %l6

/* restore input registers */
ldd [%o2 + _thread_offset_to_i0], %i0
ldd [%o2 + _thread_offset_to_i2], %i2
ldd [%o2 + _thread_offset_to_i4], %i4
ldd [%o2 + _thread_offset_to_i6], %i6

/* restore output registers */
ldd [%o2 + _thread_offset_to_o6], %o6

/* get function return value */
ld [%o2 + _thread_offset_to_retval], %o0

70

A. Code Samples

ld [%o2 + _thread_offset_to_psr], %g1

/* reset PIL to key */
ld [%o2 + _thread_offset_to_key], %o4

sll %o4, PSR_PIL_BIT, %o4
andn %g1, PSR_PIL, %o3
or %o3, %o4, %g1

andn %g1, PSR_CWP, %g1 /* psr without cwp */
wr %g1, %psr /* restore status register and ET */
nop
nop
nop

ba swap_return
nop

switch_partitions:
/* next to run thread is in own partition, just switch to that one */
ld [%o2 + _thread_offset_to_stwin], %g1
ld [%o2 + _thread_offset_to_cwpmax], %g2
ld [%o2 + _thread_offset_to_psr], %g3
ld [%o2 + _thread_offset_to_wim], %g4
ld [%o2 + _thread_offset_to_key], %g5
ld [%o2 + _thread_offset_to_retval], %g7

/* reset PIL to key */
sll %g5, PSR_PIL_BIT, %g5
andn %g3, PSR_PIL, %g3
or %g3, %g5, %g3

/* put next thread context into current */
st %o2, [%o3 + _kernel_offset_to_current]

/* switch partitions */
sll %g1, ASR20_STWIN_BIT, %g1
sll %g2, ASR20_CWPMAX_BIT, %g2
or %g1, %g2, %g1
wr %g1, %asr20

/** Now in next thread partition **/
wr %g3, %psr /* this also sets CWP */
wr %g4, %wim
nop
nop
nop

mov %g7, %o0

swap_return:
jmp %o7 + 8
nop

FUNC_END __swap

71

A. Code Samples

A.6 Interrupt Trap with Partitioning
FUNC_BEGIN __leon_trap_interrupt_svt

sub %l6, 0x10, %l3

FUNC_BEGIN __leon_trap_interrupt

mov %g2, %l4
mov %g3, %l5

/* check if we are in invalid window */
rd %wim, %g2
srl %g2, %l0, %g3
cmp %g3, 1
bne .manual_win_ov_done
nop

/* Manual window overflow */

rd %asr20, %g7
set ASR20_CWPMAX, %g6
and %g7, %g6, %g7
srl %g7, ASR20_CWPMAX_BIT, %g3
sll %g2, %g3, %g3
srl %g2, 1, %g2
or %g2, %g3, %g2

/* Enter window to save */
save

/* set new wim */
mov %g2, %wim
nop
nop
nop

/* Put registers on stack */
std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET]
std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET]
std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET]
std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET]

std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET]
std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET]
std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET]
std %i6, [%sp + CPU_STACK_FRAME_I6_OFFSET]

/* exit window */
restore
nop

.manual_win_ov_done:
/* We need to save a minimum context on the task stack */

72

A. Code Samples

/* get stack to save isr context */
sub %fp, CPU_INTERRUPT_FRAME_SIZE, %sp

st %g1, [%sp + ISF_G1_OFFSET] ! g1
std %l4, [%sp + ISF_G2_OFFSET] ! g2, g3
std %g4, [%sp + ISF_G4_OFFSET] ! g4, g5

rd %y, %g1
st %g1, [%sp + ISF_Y_OFFSET] ! y

/* get a reference to kernel */
sethi %hi(_kernel), %g2
or %g2, %lo(_kernel), %g2

/* get a reference to current running thread */
ld [%g2 + _kernel_offset_to_current], %g5

/* store CWP in TCB */
rd %psr, %g1
and %g1, PSR_CWP, %g3

st %g3, [%g5 + _thread_offset_to_cwp]

/* store WIM in TCB */
rd %wim, %g3
st %g3, [%g5 + _thread_offset_to_wim]

/* move interrupt request line into global reg */
mov %l3, %g7

/* switch to dedicated ISR partition */
mov CONFIG_LEON_INT_PART_STWIN, %g3
sll %g3, ASR20_STWIN_BIT, %g3

mov CONFIG_LEON_INT_PART_CWPMAX, %g4
sll %g4, ASR20_CWPMAX_BIT, %l4

or %g3, %l4, %g3
mov %g3, %asr20
nop
nop
nop

/** now in ISR partition **/

/* change CWP to 0 and disable interrupts */
and %g1, 0xffffffe0, %g1
mov 15, %l5
sll %l5, PSR_PIL_BIT, %l5
andn %g1, PSR_PIL, %l6
or %l6, %l5, %l6
mov %l6, %psr

mov 1, %g3

73

A. Code Samples

sll %g3, 1, %g3
mov %g3, %wim ! wim = w1
nop
nop
nop

/* setup fp and sp */
mov %g0, %fp
ld [%g2 + _kernel_offset_to_irq_stack], %sp
sub %sp, SPARC_MINIMUM_STACK_FRAME_SIZE, %sp

/* enable traps */
mov %psr, %l4
wr %l4, PSR_ET, %psr
nop
nop
nop

/** ISR DISPACH BEGIN **/
/* %l3 holds interrupt request line */
mov %g7, %o0

call _enter_irq
nop

/** ISR DISPATCH END **/
/* switch back to task partition */

/* get a reference to kernel */
sethi %hi(_kernel), %g2
or %g2, %lo(_kernel), %g2

/* get a reference to current running thread */
ld [%g2 + _kernel_offset_to_current], %g4

ld [%g4 + _thread_offset_to_stwin], %g3
sll %g3, ASR20_STWIN_BIT, %g3

ld [%g4 + _thread_offset_to_cwpmax], %g1
sll %g1, ASR20_CWPMAX_BIT, %g1

or %g3, %g1, %g3
mov %g3, %asr20
nop
nop
nop

/** now in Task partition **/

/* restore CWP from TCB */
rd %psr, %g1
ld [%g4 + _thread_offset_to_cwp], %g3
andn %g1, PSR_CWP, %g1
or %g1, %g3, %g3
mov %g3, %psr

74

A. Code Samples

/* restore WIM from TCB */
ld [%g4 + _thread_offset_to_wim], %g3
mov %g3, %wim
nop
nop
nop

#ifdef CONFIG_PREEMPT_ENABLED
/* Determine if context switch in necessary */

ld [%g2 + _kernel_offset_to_current], %g3
ld [%g2 + _kernel_offset_to_ready_q_cache], %g4

/* See if current and ready context are the same */
cmp %g3, %g4
beq no_reschedule
nop

/* A context reschedule is required */

call __swap
mov 0xf, %o0 /* PIL = 15 */

no_reschedule:
#endif /* CONFIG_PREEMPT_ENABLED */

rd %psr, %l3
and %l3, PSR_CWP, %l3 ! current CWP
andn %l0, PSR_CWP, %l0 ! rest of psr from task
or %l3, %l0, %l0
andn %l0, PSR_ET, %l0

/* Disable traps */
mov %l0, %psr
nop
nop
nop

/* Reverse context save */
ld [%sp + ISF_Y_OFFSET], %g1
wr %g1, 0, %y

ld [%sp + ISF_G1_OFFSET], %g1
ldd [%sp + ISF_G2_OFFSET], %g2
ldd [%sp + ISF_G4_OFFSET], %g4

/* Determine if we must prepare the return window */
rd %wim, %l4
add %l0, 1, %l6
and %l6, PSR_CWP, %l6
rd %asr20, %g7
set ASR20_CWPMAX, %g6
and %g7, %g6, %g7
srl %g7, ASR20_CWPMAX_BIT, %g7
add %g7, 1, %g7
cmp %l6, %g7

75

A. Code Samples

bge,a .wim_wrap_around
mov 0, %l6

.wim_wrap_around:
srl %l4, %l6, %l5
cmp %l5, 1
bne .trap_wu_done
nop

/* manual window underflow */
sub %g7, 1, %g7
srl %l4, %g7, %l5
sll %l4, 1, %l4
wr %l4, %l5, %wim
nop
nop
nop

restore
ldd [%sp + CPU_STACK_FRAME_L0_OFFSET], %l0
ldd [%sp + CPU_STACK_FRAME_L2_OFFSET], %l2
ldd [%sp + CPU_STACK_FRAME_L4_OFFSET], %l4
ldd [%sp + CPU_STACK_FRAME_L6_OFFSET], %l6

ldd [%sp + CPU_STACK_FRAME_I0_OFFSET], %i0
ldd [%sp + CPU_STACK_FRAME_I2_OFFSET], %i2
ldd [%sp + CPU_STACK_FRAME_I4_OFFSET], %i4
ldd [%sp + CPU_STACK_FRAME_I6_OFFSET], %i6
save

.trap_wu_done:

/* may have trashed cc */
wr %l0, %psr
nop
nop
nop

jmp %l1
rett %l2

FUNC_END __leon_trap_interrupt
FUNC_END __leon_trap_interrupt_svt

76

APPENDIX B

How to create an application with window partitioning

In this section, a short overview of the necessary steps for creating a simple Zephyr
application with window partitioning for the GR716 is presented.

First, the folder structure is created for the application. In the Zephyr repository,
there is a folder called samples, where the subdirectory for this example will go:

Figure B.1: Folder structure for example application.

Figure B.1 shows the minimal structure for a working Zephyr application. The
different files are explained below.

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.13.1)
2

3 include($ENV{ZEPHYR_BASE}/cmake/app/boilerplate.cmake NO_POLICY_SCOPE)
4 project(minimal_context_switch)
5

77

B. How to create an application with window partitioning

6 target_sources(app PRIVATE src/main.c)

The CMakeLists.txt file configures the cmake tool to produce the necessary files for
the build system. Through the include function the Zephyr standard application
cmake template is loaded. The project directive sets the name of the project, and
target_sources includes the source code of the application.

prj.conf
1 CONFIG_STDOUT_CONSOLE=y
2 CONFIG_PRINTK=y
3 CONFIG_MAIN_STACK_SIZE=4096
4 CONFIG_CONSOLE=y
5 CONFIG_CONSOLE_HAS_DRIVER=y
6 CONFIG_UART_CONSOLE_ON_DEV_NAME="APBUART0"
7 CONFIG_SERIAL=y
8 CONFIG_UART_APBUART=y
9 CONFIG_APBUART0=y

10 CONFIG_LEON_TIMER=y

The prj.conf file sets the standard configuration values used by kconfig. Here, ba-
sically only the UART driver and the LEON timer driver are selected. The stack
memory size for the main task is also configured.

The application code itself goes into the main.c file:

main.c
1 #include <zephyr.h>
2 #include <string.h>
3 #include <stdio.h>
4

5

6 #define STACKSIZE 4096
7 #define PRIORITY 2 /* coop threads */
8

9 void out_task(const char* output, void* param2, void* param3)
10 {
11 for(int i = 0; i < 3; i++)
12 {
13 printf(output);
14 k_yield();
15 }
16 }
17

18 K_THREAD_DEFINE(
19 task1_id,
20 STACKSIZE,
21 out_task,
22 "Hello from Task 1! \n" ,
23 NULL,
24 NULL,
25 PRIORITY,
26 K_PART_1,

78

B. How to create an application with window partitioning

27 K_NO_WAIT
28);
29

30 K_THREAD_DEFINE(
31 task2_id,
32 STACKSIZE,
33 out_task,
34 "Hello from Task 2! \n" ,
35 NULL,
36 NULL,
37 PRIORITY,
38 K_PART_2,
39 K_NO_WAIT
40);

Some comments to the code above:

Line 7 Using a positive integer, the threads are cooperative (preemptive threads have
negative priority in Zephyr)

Line 9 Both tasks are using the out_task function as their workload job. In Zephyr, a
task function must except up to 3 arguments. The first argument here is used
to point to the output string

Line 14 A call to k_yield will cause the scheduler to remove the current thread and put
in the next to run thread instead

Line 18 K_THREAD_DEFINE is used to define threads at compile time. It is also
possible to create threads dynamically at runtime in the main function

Line 19 The task ID. This is used by the compiler and linker
Line 20 The stack size required by the task
Line 21 The task function

Line 22-24 The three optional task parameters. The first one is used to define the output
string for the different tasks

Line 25 The priority of the task. Higher (absolute) numbers correspond to lower priorities
Line 26 The task options. Here, K_PART_1 is used to dedicate the first partition to

this task
Line 27 An optional task delay before the first time it is scheduled. Here, no delay is

configured

The second thread is set up exactly the same way as the first one, but will be put
in the second dedicated partition instead.

Within the Zephyr repository base directory issue the following bash commands to
set up the build system:

source zephyr-env.sh
export ZEPHYR_TOOLCHAIN_VARIANT=cross-compile
export CROSS_COMPILE=/opt/bcc-2.0.5-gcc/bin/sparc-gaisler-elf-

The last line of the above code snippet must be adapted, if a different version of
BCC is used, or if it is in a different directory. Now, within the build directory of

79

B. How to create an application with window partitioning

the minimal_context_switch example folder, issue the following commands:

cmake -DBOARD=tsim_leon3 ..

This will invoke cmake to create the build system. Now the graphical kconfig tool
can be used:

make menuconfig

This will load the the interface shown in B.2. From here, every configuration value
that can be changed for the current architecture setting can be adapted. In order to
use the window partitioning feature, the values under LEON Partitioning Options
must reflect the state shown in Figure B.3.

As can be seen in Figure B.3, partitioning is enabled, and in total four partitions
are created: one interrupt partition with 7 windows (w0 - w6), one shared partition
with 8 windows, (w7 - w14), dedicated partition 1 with 8 windows (w15 - w22),
and dedicated partition 2 with 8 windows (w23 - w30).

Different values for the different partitions are also possible, as long as there is no
overlap. Furthermore, no partition can overflow the register window circle, i.e. the
first window (w0) must be the start, and the last window (w30) must be the tail
of a partition.

Once the configuration is saved, the application ca be compiled and linked:

make

If everything was set up correctly, the make tool will compile and link the application.
Towards the end of the output, an overview of the static memory footprint is given
(see Figure B.4).

If there is a version of the LEON simulator TSIM installed, the following command
can be used to run the application:

make run

This will lead to the output shown in Figure B.5.

80

B. How to create an application with window partitioning

Figure B.2: Kconfig top menu window.

Figure B.3: Kconfig LEON partitioning options.

81

B. How to create an application with window partitioning

Figure B.4: Output of make.

Figure B.5: TSIM output.

82

	Acronyms
	List of Figures
	Introduction
	Thesis outline
	Copyright notice for code samples
	Background
	Realtime operating systems
	An RTOS for the age of IoT - Zephyr

	Hardware architecture
	SPARC v8
	Registers
	Traps
	Assembly language

	LEON3
	GR716
	The porting process

	Porting Zephyr
	Overview
	Early boot up sequence
	Traps
	Trap table
	Window overflow trap
	Window underflow trap

	Context switching
	Thread creation
	Device drivers
	Interrupt controller
	Timer

	CPU idling
	Linker scripts and toolchain

	Window Partitioning
	Interrupt handling
	Context switching

	Performance Evaluation
	LEON benchmarking

	Benchmarking Results
	Conclusion

	Future work
	Bibliography
	Code Samples
	Window Overflow
	Window Underflow
	Context Switching
	Interrupt Trap
	Context Switching with Partitioning
	Interrupt Trap with Partitioning
	How to create an application with window partitioning

