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Abstract This paper introduces the QCheck-STM plugin for Ortac, a
framework for dynamic verification of OCaml code. Ortac/QCheck-STM
consumes OCaml module signatures annotated with behavioural specific-
ation contracts expressed in the Gospel language, extracts a functional
model of a mutable data structure from it, and generates code for auto-
mated runtime assertion checking. We report on the implementation of
the tool, the structure of the generated code, and on errors found in
established OCaml libraries.
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1 Introduction

OCaml is an industrial strength, multi-paradigm programming language. While
fundamentally functional at its core, OCaml includes many imperative features,
such as references, mutable arrays, I/O, and exceptions. These pose unique chal-
lenges when trying to test and verify programs written in it.

While OCaml has been used as a platform for the implementation of various
code analysis and verification tools, e.g., the interactive theorem prover Coq [44]
and the C code analysis framework Frama-C [15], there is a lack of general
purpose tools for the verification of OCaml programs themselves. In order to
remedy this void, the Gospel project [9] equips OCaml with its own behavioural
specification language.

The Gospel language is tool-agnostic, it only offers a way of expressing formal
contracts, which can be leveraged by separate tools in order to perform analy-
sis and verification tasks. Different such tools have been developed, including
Cameleer [39], a deductive verification tool, and gospel2cfml4, a translator of

4 https://github.com/ocaml-gospel/gospel2cfml
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annotated OCaml module signatures into separation logic terms embedded in
Coq. In this paper, we focus on another tool consuming Gospel annotations called
Ortac. Ortac provides a framework for automated runtime assertion checking,
and is therefore a member of the family of dynamic verification tools. Ortac offers
a modular architecture, where analysis and verification tasks are implemented
as plugins. This paper highlights the QCheck-STM plugin, which focuses on
black-box, model-based state-machine testing in the style of QuickCheck [3,26].

Given its multi-paradigm nature, OCaml is naturally suited to a number of
different verification strategies. While it is possible to test purely functional code
with Ortac/QCheck-STM, its strength lies in the verification of specifications
relating to mutable data structures. Therefore, this paper will put emphasis on
such programs. It is customary to refer to such a data structure as the System
Under Test (SUT), and the functions provided to work with it as its Application
Programming Interface (API).

This paper provides an overview of how Ortac/QCheck-STM is implemented,
and how it may be used as a dynamic verification tool. To do so, we demonstrate
the translation of specifications for a simple array library. The OCaml interface
for the library is introduced in Section 2, the Gospel contracts for it in Section 3.
After a short overview of Ortac and its plugin structure in Section 4 we showcase
the generated code for the array example in Section 5. In Section 6 we evaluate
the approach and share examples of bugs found in existing OCaml libraries.
Finally, we discuss related work in Section 7, before we remark on future work
and conclude in Section 8.

Ortac is an open-source project and its source code is available from the
following URL:

https://github.com/ocaml-gospel/ortac

2 Running Example: Array

For illustration, we will test a library providing mutable arrays, which is an
excerpt from OCaml’s standard library Array module:

type 'a t

val make : int -> 'a -> 'a t
val length : 'a t -> int
val get : 'a t -> int -> 'a
val set : 'a t -> int -> 'a -> unit

For those unfamiliar with the syntax of OCaml, the code above defines a
type 'a t representing arrays of a parametric type 'a. In addition, this lists
the type signatures of four OCaml functions. The first function make creates a
fresh array from a given size and initialisation element. Function length accepts
an array parameter and returns the size of it. Finally, get and set both take
an array parameter and return and modify the element of an array at a given
index, respectively.

https://github.com/ocaml-gospel/ortac
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3 Gospel by Example

In order to test the array library, the type and function signatures need to be
annotated with Gospel specifications. To start, the type must be annotated with
a model. In the tradition of other specification languages [6,29], annotations are
added as special comments:

type 'a t
(* @ model size : integer

mutable model contents : 'a sequence *)

An array can conceptually be thought of as a fixed capacity container. This
logical model can be directly translated to Gospel by annotating type 'a t with
two model fields, one for the immutable size and one for the mutable contents
of the array. The types integer and ’a sequence are part of the Gospel standard
library and describe arbitrary precision integers and lists of values of type 'a,
respectively.

The make function creates new array instances given a size and an initial
element:

val make : int -> 'a -> 'a t
(* @ t = make size a

checks size >= 0
ensures t.size = size
ensures t.contents = Sequence.init size ( fun j -> a ) *)

The checks clause introduces a pre-condition that must hold at function
entry. The two ensures clauses express that the resulting array has the expected
size and that all entries are initialised to the given element a. In addition to a
checks clause, Gospel also offers a requires clause. Unlike a requires clause,
with the above checks clause the behaviour of make is well-defined in case the
pre-state does not meet the condition, as it means that the function raises an
Invalid_argument exception in that case. The function Sequence.init is again
part of the Gospel standard library.

The set function changes the value at a given position in the array:

val set : 'a t -> int -> 'a -> unit
(* @ set t i a

checks 0 <= i < t.size
modifies t.contents
ensures t.contents = Sequence.set ( old t.contents ) i a *)

Again, the function Sequence.set is part of the Gospel standard library. The
specification of set checks if the given index i is within the array bounds and
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modifies the contents of the argument array, which is indicated by the modifies
clause. For each model field marked as modified, the user needs to provide a
corresponding ensures clause specifying how to construct the modified model.
Note that it is implicitly assumed that in case the check fails, the argument
SUT remains unchanged. It is possible to define custom exceptions and give
equations for the model state after such an exception has been raised. For further
information about other Gospel features, the interested reader is referred to the
documentation5.

For brevity, we will not explain all function contracts here, as both length
and get follow analogously. The full specification of the example array library
is shown below:

type 'a t
(* @ model size : integer

mutable model contents : 'a sequence *)

val make : int -> 'a -> 'a t
(* @ t = make size a

checks size >= 0
ensures t.size = size
ensures t.contents = Sequence.init size ( fun j -> a ) *)

val length : 'a t -> int
(* @ i = length t

ensures i = t.size *)

val get : 'a t -> int -> 'a
(* @ a = get t i

checks 0 <= i < t.size
ensures a = t.contents[i] *)

val set : 'a t -> int -> 'a -> unit
(* @ set t i a

checks 0 <= i < t.size
modifies t.contents
ensures t.contents = Sequence.set ( old t.contents ) i a *)

4 Ortac

Gospel itself does not perform any kind of verification. It is the job of other tools
to take the provided specifications and perform further analysis.

The Ortac [18] tool provides functions for converting the given annotations
into OCaml code. Ortac is extensible through plugins, which can make use of
5 https://ocaml-gospel.github.io/gospel/

https://ocaml-gospel.github.io/gospel/
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Figure 1. Inner architecture of Ortac/QCheck-STM.

these functions to check specifications. Currently, three different plugins are im-
plemented: Wrapper, Monolith, and QCheck-STM. The original Ortac prototype
was developed as part of Clément Pascutto’s PhD work [38].

Ortac/Wrapper generates a wrapper module from an annotated module sig-
nature, which instruments each function with assertions on the argument and
result values according to the given specifications. Ortac/Monolith [35] generates
code to interface with Monolith [40], a fuzzing tool for OCaml. However, both
the Wrapper and Monolith plugins currently do not support the definition of
models. Therefore, they are of limited use when testing mutable data structures.
The new QCheck-STM plugin lifts this limitation, by translating Gospel spe-
cifications into tests using the QCheck-STM framework. The basic idea behind
Ortac/QCheck-STM is to extract a purely functional model of the SUT from the
provided Gospel specifications and compare the behaviour of both while running
random call sequences of the associated API.

5 Implementation

In this section, we describe the overall architecture of Ortac/QCheck-STM. We
then describe how to generate code for testing a single SUT, and finally, how to
generalise this approach to support multiple SUTs.

5.1 Ortac Underneath the Hood

In order to understand the working of Ortac/QCheck-STM, it is insightful to
look at its constituent parts, as illustrated in Figure 1. At its core, it uses the
QCheck library6, which offers utilities for randomised property-based testing. If
a user provides a random generator for a type 'a and a property as a function
'a -> bool, QCheck can then run a sequence of tests by randomly generating
test inputs of the given type and checking that the property holds for each of
6 https://github.com/c-cube/qcheck

https://github.com/c-cube/qcheck
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Figure 2. Comparing the behaviour of the SUT and model on randomly generated
API call sequences.

them. In case of a violation, QCheck automatically shrinks the given test input
to show a minimised counterexample to the user.

QCheck-STM [32] builds upon this functionality by providing a framework
for testing a mutable data structure (the SUT) against an immutable reference
model, as illustrated in Figure 2. It generates random API call sequences, and
then checks the property that the behaviour of the SUT and its functional model
coincide for each such test input. In case of a violation of that property, QCheck-
STM also reports minimised call sequence traces.

To test a particular data structure and its API with QCheck-STM, the user
has to write the model manually. Ortac/QCheck-STM offers the ability to gener-
ate the functional model automatically from the Gospel specification. It uses the
model annotations in order to generate the functional model, and the modifies
and ensures clauses to update the model on each function call.

5.2 Generated code

To illustrate the working of Ortac/QCheck-STM, we will show parts of the gener-
ated code from the array specifications introduced in Section 2. First, however,
Ortac/QCheck-STM needs another input besides the annotated interface file,
which is the configuration of the SUT:

type sut = char Array.t
let init_sut = Array.make 16 'a'

A minimal configuration needs to provide the type sut and a value of that
type named init_sut. As the name suggests, type sut defines the particular
type we would like to test, which needs to be fully instantiated. E.g., here we
instantiate the polymorphic array type to char. The init_sut value specifies the
initial SUT value from which to start each test. If the Gospel annotated interface
is in a file array.mli and the configuration in config.ml, Ortac/QCheck-STM can
be invoked as follows:
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ortac qcheck-stm array.mli config.ml

The generated code consists of multiple functor specifications and error re-
porting information. We will simplify the shown code examples to aid concise-
ness. As a starting point, the SUT and model are defined:

Generated
type sut = char Array.t
let init_sut () = Array.make 16 'a'
type state = {

size : integer;
contents : char sequence;

}
let init_state = {

size = integer_of_int 16;
contents = Sequence.init (integer_of_int 16) (fun _ -> 'a');

}

The astute reader will have realised that the definitions of type sut and
init_sut are taken from the provided configuration module (init_sut is turned
into a function here, as the generated test executable will run multiple instances
of random API sequences, for which fresh initial SUT values need to be cre-
ated). The type state defines the two model fields from the specification of
type 'a t shown in Section 2, where the type variable 'a has been instantiated
to char according to the configuration. The initial state value has been synthes-
ised from the given specification of the make function by comparing its signature
to the init_sut function from the configuration module. It does not need to
be turned into a function, since it is immutable. The functions integer_of_int
and Sequence.init are provided by the Gospel standard library.

Next, the type of available function calls (i.e., commands) is defined:
Generated

type cmd =
| Length
| Get of int
| Set of int * char

Each constructor carries argument values according to the formal arguments
of the respective signature. Notice, that the SUT argument is missing, as it is
not randomly generated, but rather kept and updated by the testing runtime.
Furthermore, the make function is not present, as it returns a new SUT. This
will be amended in Section 5.3.

In order to perform randomised property-based testing with QCheck-STM,
a QCheck generator for the cmd type is defined:
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Generated
let arb_cmd state = QCheck.make show_cmd Gen.(oneof [

pure Length;
pure (fun i -> Get i) <*> int;
pure (fun i a -> Set (i, a)) <*> int <*> char;

])

This definition needs some explanation. The function arb_cmd takes as the
only input the current state (i.e., the functional model). This is currently unused,
but might be used in the future to define smarter random command generators
(see Section 8). QCheck.make creates new instances of random generators for
a given type by taking both a function that can print values (here defined by
show_cmd which is left out for brevity) and a generator which can create random
values of that type. The Gen module provides basic generators and combinat-
ors to define new ones. Gen.oneof randomly selects from a list of generators.
Gen.pure always returns its argument value. For simple cases like Length, this
is enough, however, some command constructors carry fields for their argument
values, which need to be provided by random generators as well. For example, the
Get constructor needs an integer for the index it shall fetch from the array. The
infix operator val ( <*> ) : ('a -> 'b) Gen.t -> 'a Gen.t -> 'b Gen.t
can be used to turn a function generator into a generator of its return type by
providing a generator of its argument type. This is done by using the provided
generators of base types such as int and char.

Next, we generate a function that can run a command on a given SUT:
Generated

let run cmd sut = match cmd with
| Length -> Res (int, length sut)
| Get i -> Res ((result char exn), protect (get sut i))
| Set (i, a) -> Res ((result unit exn), protect (set sut i a))

The function run matches on the current command and calls the respective
array function. The result constructor Res is provided by QCheck-STM and car-
ries as fields the returned value and a pretty-printer for its respective type (e.g.,
int and result char exn). The function protect turns functions raising ex-
ceptions into functions returning values of type result (in OCaml all exceptions
are part of the extensible variant type exn).

As the SUT value is mutable, its internal state will change in-place during the
execution of run. The functional model of the SUT has to be updated separately.
Therefore, a function next_state is defined:

Generated
let next_state cmd state = match cmd with

| Length -> state
| Get _ -> state
| Set (i, a) ->
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if (0 <= i) && (i < state.size) then
{

size = state.size;
contents = Sequence.set state.contents i a;

}
else state

Functions length and get do not mutate the array, and therefore they return
the argument state unchanged. When setting a value at a particular index, the
next state depends on if the index is within the array bounds. If so, the new state
has the same size as the old one, and the contents are the same besides at the
given index (Sequence.set is again part of the Gospel standard library). If the
check fails, the underlying array stays unchanged. The individual cases within
next_state are extracted from the ensures clauses of the respective function
contract in Section 3. This is why each field that is marked as modified needs to
provide a corresponding post-condition describing the model of the post-state.

Finally, a post-condition function is generated:
Generated

let ortac_postcond cmd state res =
let new_state = next_state cmd state in
match (cmd, res) with

| Length, Res (_, i) ->
if i = new_state.size then None
else (* error report *)

| Get i, Res (_, a) ->
if (0 <= i) && (i < new_state.size) then

(match a with
| Ok a -> if a = Sequence.get new_state i then None

else (* error report *)
| _ -> (* error report *) )

else
(match a with

| Error (Invalid_argument _) -> None
| _ -> (* error report *) )

(* further cases *)

The function ortac_postcond takes the current command, the current state,
and the result after calling run as input, and returns an optional error report.
As all post-conditions refer to the state after executing a given command, it first
defines the new state by calling next_state (Gospel offers the old operator to
refer to the pre-state, which we utilise in the specification of the set function).
We only show the post-conditions for the length and get functions, the others
follow analogously.

In the case of length we expect the returned integer to coincide with the size
field of new_state. For get the returned value depends on if the given index was
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within bounds. If it was, the returned character should be the same as the one
taken from the functional model, and otherwise we expect an Invalid_argument
exception.

We have left out the actual error reporting mechanism for brevity. The careful
reader may have realised that there are in fact two different categories of post-
conditions. In the case of make and set, the ensures clauses define the model
after executing the respective function, which is used in next_state. For length
and get they state a property of the return value, which can be checked in
ortac_postcond.

5.3 Functions returning and consuming multiple SUTs

Thus far, all testable functions only took one SUT argument as input, and did
not return a SUT value as an output (recall that the make function was tem-
porarily omitted). Let us extend the available array API with another function
append from the OCaml standard library’s Array module. The function append
takes two arrays, and returns a fresh array with the contents of both arguments
appended. The specification is straightforward, when utilising the sequence con-
catenation operator ( ++ ) from the Gospel standard library:

val append : 'a t -> 'a t -> 'a t
(* @ t = append a b

ensures t.size = a.size + b.size
ensures t.contents = a.contents ++ b.contents *)

In order to allow testing functions that take multiple arguments of the SUT
type, or likewise return a value of that type, the generated code is adapted:

Generated
type sut = char Array.t Stack.t
let init_sut () =

let s = Stack.create () in
for _ = 0 to max_sut - 1 do

Stack.push (Array.make 16 'a') s
done;
s

type element = {
size : integer;
contents : char sequence;

}
type state = element list
let init_state = List.init max_sut (fun _ -> {

size = integer_of_int 16;
contents = Sequence.init (integer_of_int 16) (fun _ -> 'a');

})
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The type sut is not a single SUT any more, it represents a (mutable) stack
of SUT values (Stack is part of the OCaml standard library). Correspondingly,
type state must describe a functional model of the SUT stack, as is done here
through a list of model elements.

The variable max_sut is defined as the maximum number of SUT arguments
ever needed by any single function of the API under test. For our running array
example, max_sut is 2, as append expects two arguments of type t. This number
can easily be determined during code generation. By starting with a SUT stack
already filled with the maximum number of initial elements ever needed by any
API call, each available function can immediately be used.

The generator for arbitrary commands now includes the full API:
Generated

let arb_cmd state = QCheck.make show_cmd Gen.(oneof [
pure (fun s a -> Make (s, a)) <*> small_signed_int <*> char;
pure Length;
pure (fun i -> Get i) <*> int;
pure (fun i a -> Set (i, a)) <*> int <*> char;
pure Append

])

Notice, that the size argument s to Make is not provided by the int gener-
ator. Ortac/QCheck-STM uses a simple heuristic of classifying functions that
produce a SUT but take no SUT argument as initialisation functions, i.e., func-
tions that create new SUT instances. For these functions, any int generator is
automatically changed to small_signed_int in order to keep the runtime of the
generated test executable low.

For brevity, we will not show all the adapted code examples from the previous
section again, but only describe the overall behaviour. When a function requires
multiple SUT arguments, the required amount of SUTs is popped from the stack,
the function is run, and the SUTs pushed back onto the stack in reverse order
(this allows to capture changes to the argument SUTs in the post-condition). If
a function returns a SUT, this value is pushed on the stack as well (so that the
post-condition has access to it). This is illustrated in Figure 3 for the append
function.

Figure 3. Function call with arguments and return value on the SUT stack.
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Figure 4. Number of API functions covered by the generated code.

6 Evaluation

We have used Ortac/QCheck-STM to test 6 OCaml modules as summarised in
Figure 4, including the Array, Stack, Queue, and Hashtbl modules from the
OCaml standard library. We have found 5 crashing bugs, and 1 function from
the standard library needing a documentation fix (the source code for these tests,
including the respective Gospel contracts, is available online [25]). Resolving the
reported issues later revealed 2 additional unexpected exceptions in one of the
tested modules. We will elaborate further on these findings later in this section.

Figure 4 displays the number of API functions covered by the generated
testing code. With Ortac/QCheck-STM version 0.3 without the extension de-
scribed in Section 5.3, this covers 11% (7/65) to 58% (11/19) of the module
APIs. Ortac/QCheck-STM version 0.4 adds support for testing functions that
take multiple SUT arguments and return new SUT values, as described in Sec-
tion 5.3. Doing so increases the module API coverage further to 24% (11/46) to
74% (14/19). Interestingly, 7 out of 8 of the reported errors in this paper are
all due to functions that were not testable with version 0.3. Ortac automatic-
ally skips a function for which no suitable Gospel annotation is provided. The
biggest remaining contributor to untested functions is higher-order functions,
such as map and iter. We expand on lifting this restriction in Section 8.

While no bugs were found within the standard library modules, one curiosity
was discovered: The function Hashtbl.create is documented in the following
way7:
7 https://ocaml.org/manual/5.2/api/Hashtbl.html

https://ocaml.org/manual/5.2/api/Hashtbl.html
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val create : ?random:bool -> int -> ('a, 'b) t
(* * [Hashtbl.create n] creates a new, empty hash table, with

initial size [n]. For best results, [n] should be on the
order of the expected number of elements that will be in
the table. The table grows as needed, so [n] is just an
initial guess. ... *)

A natural Gospel specification would therefore be to model the hash table
type as an association list (similar to dictionaries in other languages). The spe-
cification of the create function could then look similar to the following:

type ('a, 'b) t
(* @ mutable model contents : ( 'a * 'b ) list *)

val create : ?random:bool -> int -> ('a, 'b) t
(* @ h = create ?random size

checks size >= 0
ensures h.contents = [] *)

Running the test generated by Ortac/QCheck-STM reveals the following:

Gospel specification violation in function create

File "hashtbl.mli", line 7, characters 11-20:
size >= 0

when executing the following sequence of operations:

[@@@ocaml.warning "-8"]
open Hashtbl
let protect f = try Ok (f ()) with e -> Error e
let sut0 = create ~random:false 16
let r = protect (fun () -> create true (-8))
assert (match r with

| Error (Invalid_argument _) -> true
| _ -> false)

(* returned Ok (<sut>) *)

It turns out, that the initial guess can be negative, in which case it has the
same effect as providing zero. After reporting this, the documentation for the
create function has been revised in OCaml 5.38.
8 https://github.com/ocaml/ocaml/pull/13535

https://github.com/ocaml/ocaml/pull/13535
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Outside of the standard library, 2 libraries from the official OCaml package
repository have been tested as well, which revealed errors in both of them:

The Bitv library9 is a mature, 25-year-old OCaml library implementing mut-
able bit-vectors of arbitrary but fixed length, with an API very similar to ar-
rays. In three of its functions (fill, sub, and blit) Ortac/QCheck-STM tests
discovered that their index-bound checking could lead to an integer overflow,
resulting in a segmentation fault on at least one tested platform (the usage of
unsafe language features or external code can lead to diverging behaviour on
different operating systems or processor architectures). The issue has been re-
ported and fixed10 consequently. Furthermore, Ortac/QCheck-STM found two
cases of unexpected exceptions being raised when trying to rotate a zero-length
vector. The issue has been reported11 and fixed12 as well.

The Varray library13 implements extensible arrays. It uses an intricate data
structure [22] along with some unsafe OCaml tricks in order to obtain good
amortised performance, of which many can lead to crashing programs if used
incorrectly. Such a crashing scenario was found when starting from an empty ar-
ray and then adding and removing an element from different ends of the array14.
Anecdotally, tests of the Varray library have been part of the Ortac code-base
almost from the initial release for internal testing. These discovered an initial
bug early on15. The latest error, however, was only recently discovered when
Ortac/QCheck-STM was extended to cover functions returning SUT values as
described in Section 5.3.

Given the automated nature of the code generated by Ortac/QCheck-STM,
it is particularly suited to be included in a Continuous-Integration (CI) pipeline,
as is demonstrated by the CI used in Ortac’s GitHub repository16. So far, all
observed test runs have shown runtimes in the range of hundreds of milliseconds,
even with the extension described in Section 5.3. Despite these tests still not
reaching full API coverage, we believe this highlights the tool’s usability in CI.

7 Related Work

Fundamental ideas within modern verification can be traced back to Hoare.
This is the case for invariants and pre- and post-conditions as found in Hoare
logic triples [23] as well as proving an implementation correct with respect to
a model [24]. Meyer later put the concepts into use in the design-by-contract
methodology of the Eiffel programming language [31]. The require(s) and
ensure(s) keywords of modern specification languages such as Gospel thus have
roots in Eiffel.
9 https://github.com/backtracking/bitv

10 https://github.com/backtracking/bitv/pull/32
11 https://github.com/backtracking/bitv/issues/33
12 https://github.com/backtracking/bitv/commit/f30e7a8
13 https://github.com/art-w/varray
14 https://github.com/art-w/varray/issues/2
15 https://discuss.ocaml.org/t/ann-varray-0-2/13492
16 https://github.com/ocaml-gospel/ortac

https://github.com/backtracking/bitv
https://github.com/backtracking/bitv/pull/32
https://github.com/backtracking/bitv/issues/33
https://github.com/backtracking/bitv/commit/f30e7a8
https://github.com/art-w/varray
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The Gospel specification language for OCaml follows a line of specification
languages such as the Java Modeling Language (JML) for Java programs [29],
the ANSI/ISO C Specification Language (ACSL) for C programs [6], and Spec#
for C# programs [5].

Software engineering tools to validate program specifications can roughly
be divided into two categories: One group of tools works by dynamic runtime
assertion checking, whereas another group of tools performs static verification.
The JML-consuming ESC/Java tool [21] targets both of these categories. The
ACSL-consuming Frama-C tool [15] targets the latter. The Gospel-consuming
Ortac tool targets the former, but other Gospel tools (under development) [39]
target the latter.

Whereas the above specification languages and verification tools have been
developed for existing programming languages a posteriori, a newer class of pro-
gramming languages have verification fundamentally built in from the beginning.
This is the case for Lean [33], Why3 [19], F* [43], and Dafny [30], among others.

Another approach to formally verified software development is correct-by-
construction techniques. Filliâtre et al. [17] describe a development process that
builds upon both Gospel and Why3 as part of the VOCAL [10] project. The user
provides an OCaml module signature with Gospel annotations, which is trans-
lated to a WhyML specification. The module is then implemented in WhyML,
proven correct with respect to the translated specification by Why3, and auto-
matically translated back to OCaml code.

The term property-based testing was introduced by Fink and Bishop [20]
originally. It became popular with QuickCheck, an embedded domain-specific
language for the functional programming language Haskell [12], and has since
been ported to numerous other languages, including OCaml [46]. QuickCheck
introduced modular combinators for building up generators of complex test in-
puts, how each input is tested on properties in the form of Boolean-valued func-
tions, and test input shrinking when finding a counterexample. Whereas the ori-
ginal QuickCheck formulation targeted purely functional code, in follow-up work
Claessen and Hughes presented extensions to target monadic, effectful Haskell
code, including the idea of model-based testing [13]. While QuickCheck was
primarily conceived as a testing tool, the method has since been introduced in
various interactive theorem provers in order to quickly provide counterexamples
during the proof development process. Examples of this can be found in Isa-
belle [7,8], Coq [37], and Agda [16].

With roots in model-based testing from outside the functional programming
language community [45], the Gast framework for the Clean programming lan-
guage offered state machines to specify the intended behaviour of stateful react-
ive systems [27]. The design of the state-machine framework for the commercial
Erlang QuickCheck [3,26] has since influenced framework ports for other lan-
guages, e.g., for Scala [34] and QCheck-STM for OCaml as used in this work [32].
The state-machine approach furthermore extends to testing stateful code for race
conditions under concurrent usage [14].
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In an impressive feat, Arts et al. [4] have developed state-machine models of
the AUTOSAR specification to test automotive software. The range of defects
found in doing so underlines the usefulness of the approach. Other successful
QuickCheck applications include testing of telecommunication software [3], data
structures [2], election software [28], computational geometry algorithms [41],
compilers [36], and run-time systems [32].

8 Conclusion and Future Work

In this paper, we have presented Ortac/QCheck-STM, a tool that consumes
behavioural contracts expressed in the Gospel specification language, and ge-
nerates code to automatically test a given OCaml module against a functional
reference model derived from these contracts. Despite being a relatively young
tool with the first version released in October 2023, Ortac/QCheck-STM has
already proven useful in finding bugs in established OCaml libraries, as well as
pointing out inconsistencies in documentation. We expect to find more errors
with it as we continue annotating more libraries with Gospel contracts.

While this paper focuses on Ortac/QCheck-STM, previous work [42] has in-
vestigated verification of OCaml code by leveraging both static and dynamic
verification tools for Gospel, including Ortac. In that work, the authors remark
on various limitations of Ortac, of which many have been lifted (including, for ex-
ample, the verification of functions taking multiple SUT arguments, or returning
SUT values). However, Ortac/QCheck-STM still has various limitations, which
we would like to lift in future work:

Given its nature as a dynamic verification tool, Ortac is inherently restricted
to the executable fragment of the Gospel specification language. At times, this
results in contracts that are not as natural as their purely logical counterpart.
By extending the accepted syntactic forms, contracts could be written in ways
that would make them more amenable to other forms of verification (and their
respective tools) as well.

By design, the Gospel specification language implicitly requires that mutable
arguments do not alias, i.e., that they occupy separate memory locations in the
OCaml heap [9]. Therefore, Ortac/QCheck-STM does not attempt to generate
calls with aliased SUTs. Once Gospel is enhanced to express aliasing properties,
we would like to extend Ortac/QCheck-STM accordingly to exercise such speci-
fications.

The majority of functions in Figure 4 currently not covered by the generated
code comprise idiomatic higher-order functions such as map, fold, and iter.
Gospel currently does not have a way of specifying effectful function arguments,
whereas it is possible to specify the behaviour of functions accepting pure func-
tion arguments [9]. As a first step, Ortac should be able to lift a restriction for
the latter, e.g., using Claessen’s approach to function generation [11]. Secondly,
once Gospel has set on a way for specifying effectful function arguments, we
hope to extend Ortac to cover such API calls as well.
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Currently, preconditions introduced by requires clauses are not considered
during the generation of arbitrary command lists on which to test the SUT and
the model. During the execution of each test case, if a given pre-state does not
fulfil the stated pre-condition for a particular command, it is simply skipped. The
random generator could be extended to take requires clauses into account while
generating random sequences of commands, which would increase the efficiency
of the tool.

QCheck-STM was originally developed to test the new multicore runtime
arriving with OCaml 5 [32]. It can therefore also produce parallel sequences of
random API calls, and test if the observed behaviour is sequentially consistent
by reconciling each run with a sequential execution of a given model. By ex-
tending Ortac to use the parallel test generator, it would be possible to also test
concurrent data-structures (as for example done by Artho et al. [1]).
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